NJD002325074

1383

September 27, 2005

Mr. Frank Faranca
Case Manager, Bureau of Publicly Funded Site Remediation
New Jersey Department of Environmental Protection
401 E. State Street P.O. Box 028
5th Floor West
Trenton NJ 08625-0028

RE: NJPDES-DGW Permit 0086487 Effective March 1, 2000

Dear Mr. Faranca:

Two copies of the Discharge to Groundwater Report consisting of one (1) T-VWX-014, seven (7) VWX-015 Groundwater Analysis – Monitoring Well reports and report Sections 1.0 through 8.0 for the July through September 2005 quarter are enclosed.

Detection Monitoring was performed in accordance with Part 4-DGW Table 2, using the Ground Water Sampling and Analysis Plan approved in April 1996.

Lenox inspection logs were reviewed and a summary of the logs for the quarter is enclosed.

The "Mann-Whitney U-Test" statistical analysis of the ground water TCE results from the five (5) sentinel wells over eight (8) sampling quarters was rolled forward twenty-four (24) quarters to cover the July 2005 data and is included in section 7 of the report. The null-hypothesis is accepted for sentinel wells MW-75, MW-76, MW-77, MW-78 and MW-79A and we cannot statistically conclude that the TCE concentrations are decreasing for the twenty-fourth (24th) quarter's data set. In addition, MW-75 has been non-detect for the past twenty-four (24) consecutive quarters.

The **bold** data in the tables denotes elevated results, which exceed the site-specific GWQC's for lead (10ug/l) and zinc (36.7 ug/l) as determined by calculating their arithmetic means from data reported in a 3-year study. Trichloroethylene levels are compared to the New Jersey limit of 1.0 ppb. Please note:

- MW-3 and MW-4 showed elevated levels of total and dissolved lead. No other wells showed elevated levels of either total or disolved lead.
- MW-3, MW-4, MW-15, MW-25, and B-31 showed elevated levels of both total and dissolved zinc, while MW-81 showed elevated levels of total zinc but not dissolved zinc;

Mr. Frank Faranca September 27, 2005 Page 2

Re: NJPDES-DGW Permit 0086487 Effective March 1, 2000

- Of the seventeen (17) wells sampled for TCE this quarter, three (3) wells, MW-10, MW-77 and MW-78 were higher than the last time they were sampled. Nine (9) wells decreased: MW-12S, MW-12D, MW-15, MW-25, B-31, B-59, B-76, MW-79A and MW-81. Five (5) wells: MW-1, MW-13, MW-14D, MW-75 and MW-80 remained essentially the same;
- TCE was elevated in three (3) of the five (5) downgradient sentinel wells, MW-77, MW-78 and MW-79A at 1.9, 2.3 and 4.0-ug/L, respectively. [MW-79A decreased slightly from 5.5-ug/L.]
- The volatile organic compound cis-1, 2-dichloroethene was detected in five (5) wells: 0MW-10, MW-12D, MW-77, MW-78 and MW-79A. Trans-1,2-dichloroethene was detected in MW-79A. TCE daughter species were not detected in any other wells;
- The Monthly Daily Average Flows for the quarter were _348,557-gallons per day for June 2005, _350,739-gallons per day for July 2005 and _379,777-gallons per day for August 2005;
- GAC Treatment System influent and effluent unfiltered water samples contained elevated total zinc at 59.1-ug/L, and 343-ug/L respectively. The filtered influent, mid and effluent water samples contained elevated zinc at 62.6-ug/L, 41.3-ug/L and 331-ug/L respectively. The zinc is attributed to the higher zinc levels observed in B-31 and, previously, other wells.;
- No TCE daughter compounds were detected in the GAC Treatment System influent, mid or effluent water samples;
- Lead was detected, at less than an elevated level, in the GAC Treatment System, unfiltered mid and effluent water samples and in the filtered influent and effluent water samples;
- TCE and cis-1, 2-dichloroethene were detected below the New Jersey MCL's of 1.0 ug/l in only one (1) of the three (3) residential, downgradient wells sampled, RESW-1.

Please call (609) 965-8272 if there are any questions.

Sincerely,

John F. Kinkela

Director of Environmental Engineering

Enclosures

-Pomona DGW and TCE Quarterly Groundwater Monitoring Report - July 2005

Monitoring Round

-Summary of Inspection Logs – July through September 2005 Quarter

bcc: J.H. Ennis (w/attachments)
L.A. Fantin, Lenox (w/attachments)
Shane Nelson (w/attachments)
File

NE W JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER RESOURCES

Form T-VWX-14

Signature

MONITORING REPORT - TRANSMITTAL SHEET

REPORTING PERIOD NJPDES No. YR MO 0 0 8 6 4 8 7 0 7 0 5 thru 0 9 0 5 PERMITEE: LENOX INCORPORATED Name 100 LENOX DRIVE Address LAWRENCEVILLE, NEW JERSEY 08648 **FACILITY:** Name LENOX CHINA, A DIVISION OF LENOX INCORPORATED **TILTON ROAD** Address POMONA, NEW JERSEY 08240 (County) **ATLANTIC** Telephone (609) 965-8272 FORMS ATTACHED (Indicate Quantity of Each) **OPERATING EXCEPTIONS** YES NO SLUDGE REPORTS - SANITARY DYE TESTING T-VWX-007 T-VWX-008 T-VWX-009 **TEMPORARY BYPASSING** SLUDGE REPORTS - INDUSTRIAL **DISINFECTION INTERRUPTION** T-VWX-010A T-VWX-010B MONITORING MALFUNCTIONS WASTEWATER REPORTS UNITS OUT OF OPERATION T-VWX-011 T-VWX-012 T-VWX-013A OTHER GROUNDWATER REPORT (As per permit) (Detail any "yes" on reverse side in appropriate space.) 7 VWX-015 VWX-016 VWX-017 NJPDES DISCHARGE MONITORING REPORT **EPA FORM 3320-01 AUTHENTICATION -**I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment PRINCIPAL EXECUTIVE OFFICER or LICENSED OPERATOR **DULY AUTHORIZED REPRESENTATIVE** Name Name JOHN F. KINKELA Grade & Registry No. Title DIR. OF ENVIRONMENTAL ENGINEERING

Signature

SUMMARY OF INSPECTION LOGS

Quarter July 2005 – September 2005

Facility:

Glaze Basin Cap

Type:

Asphalt Paving

Inspections:

Monthly

Required:

Monthly

Repairs/Maintenance: NA

Condition:

Excellent condition

Remarks:

Repaved

Facility:

Slip Mound Cap

Type:

Membrane with soil and

vegetative cover - mounded

Inspections: Monthly

Required:

Monthly

Repairs/Maintenance: None

Condition:

Vegetative cover is in good condition and no erosion was noted. Protective

guard rail in good condition.

Remarks:

None.

Facility:

Nine (9) RCRA Monitoring Wells

Type:

N/A

Inspections: Monthly

Required:

Monthly

Repairs/Maintenance: None

Condition:

All wells intact and secure.

Remarks:

Sampled MW's 1, 3, 4, 6, 9 and 10 in July

SUMMARY OF INSPECTION LOGS

Quarter July 2005 – September 2005

Facility:

Seven (7) Recovery Wells

Type:

N/A

Inspections:

Monthly

Required:

Monthly

Repairs/Maintenance: None

Condition:

All wells intact and secure. RW-1, not in use.

Remarks:

Installed two (2) new recovery wells RW-8 and RW-9, sampled in August.

Facility:

Polishing Basin

Type:

N/A - Closed

Inspections: Monthly

Required:

Monthly

Repairs/Maintenance: N/A

Condition:

Clean closed. Vegetative cover is in place, no erosion noted.

Remarks:

None.

Facility:

Tilton Pond

Type:

Earth Dike, Unlined

Inspections: One time per day

Required:

Monthly

Repairs/Maintenance: SWMU closure delayed until Summer 2006 due to high groundwater.

Current groundwater levels are still high.

Condition:

Vegetative cover on berms is in good condition and no erosion was noted. No industrial waste discharge to pond since August 1992. No overtopping controls required as pond is permitted to discharge non-contact cooling water and stormwater

to surface water under NJPDES-DSW Permit #0005177.

Remarks:

As industrial wastewater no longer flows through pond, final cleaning and sampling

are planned, when groundwater is low, to effect clean closure.

SUMMARY OF INSPECTION LOGS

Quarter July 2005 – September 2005

Prepared by: flun

Date: 09/27/05

Facility:	Sludge Disposal Area	Type: Aspha	alt Paving
Inspections:	Monthly	Required:	No
Repairs/Mair	ntenance: None.		
Condition:	Asphalt and fence in excellen	t condition.	
Remarks:	None		_
			=
Facility:	Area of Concern Type:	Aspha	alt Paving, Membrane Cap & Fence
Inspections:	Monthly	Required:	No
Repairs/Main	tenance: None.		
Condition:	Asphalt and fence in excellen	t condition.	
Remarks:	None		\mathcal{A}

C:\WPDATA\JFK\LTRS\DGW\INSP.LOG

LENOX CHINA A DIVISION OF LENOX, INC. POMONA, NEW JERSEY

POMONA DGW AND TCE
QUARTERLY GROUNDWATER
MONITORING REPORT
JULY 2005 MONITORING ROUND

PROJECT #43838.020/021 SEPTEMBER 2005

Office Location:
GANNETT FLEMING
202 Wall Street
Princeton, New Jersey 08540

Office Contacts:

James M. Barish, CPG

Robyn Myhre

(609) 279-9140

CONTENTS

1.0 INTRODUCTION	1
2.0 DETECTION MONITORING PROGRAM (DGW)	2
3.0 GAC TREATMENT SYSTEM MONITORING PROGRAM (DGW)	4
4.0 DEPTH TO WATER, WATER LEVEL ELEVATIONS, AND TREATMENT SYSTEM FLOW MONITORING (DGW)	6
4.1 Depth to Water and Water Level Elevations	
4.2 Treatment System Flow Monitoring	6
5.0 TCE MONITORING PROGRAM (MOA)	7
5.1 Background	7
5.2 Field Procedures	7
5.3 Groundwater Monitoring Results	8
6.0 SOLID WASTE MANAGEMENT UNIT NO. 2 AND AREA OF CONCERN GROUNDWATER MONITORING PROGRAM (MOA)	11
7.0 CLASSIFICATION EXCEPTION AREA / STATISTICAL ANALYSIS PROGRAM (MOA)	12
8.0 RESIDENTIAL WELL SAMPLING	14

FIGURES

No.	Description
1	Groundwater Flow Map – July 18, 2005
2	Groundwater Flow Map – July 18, 2005– Shallow Wells
3	Groundwater Flow Map – July 18, 2005– Deep Wells
4	Extent of Trichloroethene in Groundwater – July 18-22, 2005
5	Residential Well Sampling Location Map

APPENDICES

APPENDIX A – Groundwater Sampling Logs

 $APPENDIX \ B-Groundwater \ Contour \ Map \ Report \ Form$

APPENDIX C - Laboratory Data Reports (Bound Separately)

1.0 INTRODUCTION

This report summarizes the results of the groundwater monitoring programs that satisfy the requirements outlined in Lenox's NJPDES Discharge to Groundwater (DGW) permit (permit number NJ0086487) and the Memorandum of Agreement (MOA) between Lenox and NJDEP. All groundwater monitoring and analytical procedures were conducted in accordance with the protocols outlined in the most recently revised Groundwater Sampling and Analysis Plan (GWSAP) and Supplemental Groundwater Sampling and Analysis Plan (SGWSAP) approved by NJDEP.

This report presents the DGW and MOA sampling program data in a single document. The report components are as follows:

- Detection Monitoring Program
- GAC Treatment System Monitoring Program
- Depth to Water and Water Level Elevation Measurements
- TCE Monitoring Program
- SWMU No. 2 and Area of Concern Monitoring Program
- Classification Exception Area/Statistical Analysis Program
- Residential Well Sampling

The first three items satisfy the DGW permit monitoring requirements while the remaining items fulfill the requirements of the MOA.

2.0 DETECTION MONITORING PROGRAM (DGW)

The quarterly detection monitoring program is covered by the GWSAP and consists of the following for the third quarter:

- Sample monitoring wells MW-1, MW-3, MW-4, MW-6, MW-9 and MW-10.
- All samples are analyzed for color and total and dissolved lead and zinc. Samples from MW-1 and MW-10 are also analyzed for total and dissolved iron, total dissolved solids (TDS), total suspended solids (TSS) and volatile organic compounds (VOCs).
- Specific conductivity, pH, temperature and dissolved oxygen are measured in the field during purging and prior to sample collection.

Table 1, Section 2 summarizes the results of the current sampling event. The full laboratory data report is provided in Appendix C. Tables 2 through 7 summarize historical sampling results for each well since 1998.

The July 2005 monitoring results are summarized below:

- Total lead concentrations ranged from less than the laboratory reporting limit of 3.0 micrograms per liter (μg/l) to 27.9 μg/l, with the highest concentration in the sample from MW-3. Dissolved lead concentrations ranged from less than the laboratory reporting limit of 3.0 μg/l to 24.3 μg/l, with the highest concentration in the sample from MW-3.
- Total zinc concentrations ranged from less than the laboratory reporting limit of $20 \mu g/l$ to 3,570 μ g/l, with the highest concentration in the sample from MW-3. Dissolved zinc concentrations ranged from less than the laboratory reporting limit of 20μ g/l to 3,590 μ g/l, with the highest concentration also in the sample from MW-3.
- Samples from wells MW-1 and MW-10 were analyzed for iron. Total iron was detected at a concentration of 750 μg/l in MW-1. Total iron was not detected in the sample from MW-10 at a concentration exceeding the 100 μg/l laboratory reporting limit. Dissolved

iron was not detected in either sample at concentrations exceeding the $100~\mu g/l$ laboratory reporting limit.

- TDS concentrations were 93 milligrams per liter (mg/l) in the sample from MW-1 and 260 mg/l in the sample from MW-10. TSS concentrations were less than the laboratory reporting limit of 4.0 mg/l in the samples from both MW-1 and MW-10.
- Color concentrations ranged from less than the laboratory reporting limit of 5 color units to 30 color units. The highest concentration was detected in the sample from MW-1.
- There was good agreement between analyte concentrations in the field (MW-10) and duplicate (MW-2) samples.
- No analytes were detected in the field or trip blank samples at concentrations exceeding their respective laboratory reporting limits.

LENOX CHINA POMONA, NEW JERSEY

TABLE 1 SECTION 2

GROUNDWATER QUALITY DATA - JULY 18, 2005

Parameter	Units	MW-1	MW-3	MW-4	MW-6	MW-9	MW-10	MW-2	r.D	-
pH, Field	pH units	5.03	5.76	5.57	4.27			(MW-10 Dup)	FB	TB
Specific Conductance	ms	0.075	0.45	0.186	0.16	5.84	5.35	5.35	-	-
Oxygen, Dissolved	mg/l	6.00	3.20	5.10		0.231	0.297	0.297	-	-
Temperature, Field	°C	14.9	20.9	20.9	4.70	2.20	2.30	2.30	-	-
Total Suspended Solids	mg/l	<4.0	20.9	20.9	15.2	16.3	16.6	16.6	-	-
Total Dissolved Solids	mg/l	93	_	-	-	-	<4.0	<4.0	<4.0	-
Ammonia-Nitrogen	mg/l	-	_	-	-	-	260	262	<10	-
Color	CU units	30	25	-	-	-	-	-	-	-
Sulfate	mg/l	50	23	5	5	5	5	5	<5	-
Iron, Dissolved	μg/l	<100	-	-	-	-	-	-	-	-
Lead, Dissolved	μg/l	<3.0	24.2	-	-	-	<100	<100	<100	-
Sodium, Dissolved	μg/l	\5.0	24.3	10.5	<3.0	<3.0	<3.0	<3.0	<3.0	-
Zinc, Dissolved	μg/l	<20	2 500	-	-	-	-	-	-	-
Iron, Total	μg/l μg/l	750	3,590	40.9	<20	<20	<20	<20	<20	
Lead, Total			-	-	-	-	<100	<100	<100	-
Sodium, Total	μg/l	<3.0	27.9	21.2	<3.0	<3.0	<3.0	<3.0	<3.0	-
Zinc, Total	μg/l	-20	-	-	-	-	-	-	-	- -
, =	μg/l	<20	3,570	43.2	<20	<20	<20	<20	<20	-
Volatile Organic Compounds						j		,	•	
1,1-Dichloroethene	110/1	-0.40	[i	
Cis-1,2-Dichloroethene	μg/l	<0.49	-	-	-	-	<0.49	<0.49	< 0.49	< 0.49
Trans-1,2-Dichloroethene	μg/l	<0.17	-	-	-	- [0.81J	0.87J	< 0.17	< 0.17
Methylene Chloride	μg/l	<0.28	-	-	-	-	<0.28	<0.28	<0.28	< 0.28
Trichloroethene (TCE)	μg/l	<0.22	-	-	-	-	<0.22	<0.22	<0.22	< 0.22
Vinyl Chloride	μg/l	<0.15	-	-	-	-	5.6	5.5	<0.15	< 0.15
_	μg/l	<0.13	-	-	-	-	<0.13	<0.13	< 0.13	<0.13
Sum of Volatile Organic Compounds	μg/l	<0.72			-	-	6.97	6.93	<0.72	<0.72

Notes:

Values in **bold** font exceed the site specific Groundwater Quality Criteria for Lead (10 μg/l), Zinc (36.7 μg/l) or TCE (1.0 μg/l).

⁻⁼ Not Analyzed <= Not Detected J = Estimated Value

3.0 GAC TREATMENT SYSTEM MONITORING PROGRAM (DGW)

Groundwater samples from the GAC unit influent, mid-point, and effluent sampling ports were analyzed for TCE and its breakdown products (1,1-DCE, cis/trans 1,2-DCE, and vinyl chloride), total and dissolved iron, lead, and zinc, TDS, and TSS. The analytical results are summarized in Table 1, Section 3.

The July 2005 GAC monitoring results are summarized below:

- The GAC influent sample contained TCE at a concentration of 4.8 μg/l. The midpoint and effluent samples did not contain TCE at concentrations exceeding the 0.50 μg/l laboratory reporting limit.
- 1,1-Dichloroethene, cis-1,2,-dichloroethene, trans-1,2-dichloroethene and vinyl chloride were not detected in the influent, mid-point or effluent samples at concentrations greater than their respective laboratory reporting limits.
- Lead concentrations in the unfiltered influent, mid-point and effluent samples were <1.2 μg/l, 1.6 μg/l and 2.4 μg/l, respectively. Lead concentrations in the filtered influent, mid-point and effluent samples were 2.1 μg/l, <1.2 μg/l and 2.3 μg/l, respectively.
- Zinc concentrations in the unfiltered influent, mid-point and effluent samples were 59.1 μ g/l, 23.3 μ g/l and 343 μ g/l, respectively. Zinc concentrations in the filtered samples were 62.6 μ g/l, 41.3 μ g/l and 331 μ g/l, respectively.
- Iron concentrations in the unfiltered influent, mid-point and effluent samples were 314 μ g/l, 43.3 μ g/l and 119 μ g/l, respectively. Iron concentrations in the filtered samples were 147 μ g/l, 43.8 μ g/l and 61.1 μ g/l, respectively.

- TDS concentrations in the influent, mid-point and effluent samples were 167 mg/l, 138 mg/l and 141 mg/l, respectively.
- TSS concentrations in the influent, mid-point and effluent samples were all less than the laboratory reporting limit of 10 mg/l.

LENOX CHINA FACILITY AND ADJACENT AREA POMONA, NEW JERSEY

TABLE 1 SECTION 3

GAC TREATMENT SYSTEM SAMPLING RESULTS, JULY 14, 2005

Sample ID	Permit	PO-GAC-INF	PO-GAC-MID	PO-GAC-EFF	Percent
Sample Date	Limits	7/14/2005	7/14/2005	7/14/2005	Removal
Volatile Organic Compounds (µg/l)					
Trichloroethene (TCE)	1.0	4.8	<0.5	<0.5	
1,1-Dichloroethene	2.0	<0.5	<0.5	<0.5	NA NA
cis-1,2-Dichloroethene	2.0	<0.5	<0.5		1 .
trans-1,2-Dichloroethene	2.0	<0.5	√ <0.5		
Vinyl chloride	5.0	<0.5	<0.5	<0.5	r NA
Metals (μg/l)	,			-	a.
Iron (Unfiltered)	NL	314	√ 43.3	✓ 119́	✓ NA
Iron (Filtered)	NL	147	✓ 43.8	61.1	✓ NA
Lead (Unfiltered)	NL	<1.2	1.6	2.4	i ,
Lead (Filtered)	NL	2.1	<1.2		1
Zinc (Unfiltered)	NL	59.1	23.3	i	l
Zinc (Filtered)	NL	62.6	41.3	331	✓ NA
TDS (mg/l)	NL	167	/ 138	√ 141	NA
TSS (mg/l)	NL	<10	<10	· <10	✓ NA

Notes:

μg/l - Micrograms per liter

NL - No limit

mg/l - Milligrams per liter

NA - Not applicable

Values in **bold** exceed the site specific Groundwater Quality Criteria of 1.0 µg/l for TCE.

^{* -} Results less than the laboratory minimum detection limit were considered to be one half the minimum detection limit

4.0 DEPTH TO WATER, WATER LEVEL ELEVATIONS, AND TREATMENT SYSTEM FLOW MONITORING (DGW)

4.1 Depth to Water and Water Level Elevations

The July 18, 2005 depth to water and water level elevation data is summarized in Table 1, Section 4. Depths to water in the wells on the south and north sides of the plant that screen the same interval as the recovery wells were used to develop the water level elevation and groundwater flow map (Figure 1). As shown in Figure 1, the groundwater flow direction is to the northeast, which is consistent with previous measurements.

The depth to water measurements in the well points installed downgradient of the recovery wells were plotted to develop the water level elevation and groundwater flow direction maps shown in Figures 2 and 3.

4.2 Treatment System Flow Monitoring

In a letter to Lenox dated April 18, 2000, NJDEP requested that Lenox propose an "Average Daily Volume" (ADV) that would represent the minimum pumping volume required to adequately capture the TCE plume. The ADV would be calculated by dividing the total volume of groundwater extracted by the recovery system each month by the number of days in the month and would be reported quarterly to NJDEP. In a letter to NJDEP dated May 19, 2000, Lenox proposed an ADV of 268,000 gallons per day, which was based on the results of groundwater modeling and the empirical water level and groundwater chemistry data developed since the recovery system started in 1991.

During the period June 1 through June 30, 2005, the calculated ADV was 348,557 gallons per day. During the period July 1 through July 31, 2005, the calculated ADV was 350,739 gallons per day. During the period August 1 through August 31, 2005, the calculated ADV was 379,777 gallons per day.

LENOX CHINA FACILITY AND ADJACENT AREA POMONA, NEW JERSEY

TABLE 1 SECTION 4

WATER LEVEL MEASUREMENTS, JULY 18, 2005

	Measuring Point Elevation	Donth to W	Water Level
Well No.	(ft. above mean sea level)	Depth to Water (ft. below MP)	Elevation (fl. above mean sea level)
P1	65.69	7.75	57.94
PIA	66.32	7.97	. 58.33
PΙΒ	66.34	8.04	58.30
P5	66.74	7.38	59.36
P5A	66.74	8.81	57.93
P8A P8B	70.02	11.61	58.41
P9A	70.07	10.17	59.90
P9B	70.97	12.90	57.86
P9C	71.31	13.06	58.25
MWI	69.28	11.07	58.21
MW3	67.09	9.87	57.22
MW4	66.98	7.41	59.57
MW5 MW6	64.17	9.34	54.83
MW7	67.31	8.86 10.64	56.22 56.67
MW8	67.16	9.55	57.61
MW9	69.51	12.96	56.55
MW10	63.51	7.44	56.07
MWII	63.05	8.05	. 55.00
MW12D MW12S	62.89	7.56	55.33
MW13	64.66	7.33	55.29 55.58
MW14D	63.63	7.94	55.69
MW14S	63.64	7.94	55.70
MW15	66.07	9.50	56.57
MW16	62.07	7.22	54.85
MW17 MW23	62.09	7.07	55.02
MW23A	61.78	6.91 7.28	54.58 54.50
лW24	62.60	7.90	54.70
MW25	61.13	6.68	54.45
AW25A	61.29	6.82	54.47
MW25B MW26A (B30A)	61.22	6.73	54.49
MW26B (B30B)	62.48	7.14 7.32	55.34
1W72	64.19	7.65	54.33 56.54
1W73	63.06	6.76	56.30
1W74	62.56	6.82	55.74
1W75	60.15	5.86	54.29
1W76 1W77	60.60	6.46	54.14
1W78	60.41 59.84	5.58	54.18 54.26
1W79A	60.51	6.04	54.47
(W80	62.49	6.81	55.68
1W81	61.90	7.03	54.87
31	62.19	8.17	54.02
32 53	63.29 62.31	7.18	54.38
54	62.39	7.18	55.13 55.18
59	60.02	6.06	53.96
66	61.71	7.70	54.01
56A	61.60	7.41	54.19
56B 57	61.86	7.65	54.21
70A	62.29 61.39	8.27 6.82	54.02 54.57
71	62.31	8.35	53.96
ZIS .	60.27	6.20	54.07
ID	60.52	6.71	53.81
22S	60.52	6.42	54.10
2D	60.70	6.78	53.92
3S 3D	61.47	7.39	54.08
48	61.60	7.51 6.65	54.09 54.15
4D	61.09	6.99	54.10
58	60.47	6.19	54.28
5D	60.56	6.36	54.20
6S	60.79	6.56	54.23
6D	60.73	6.52	54.21

5.0 TCE MONITORING PROGRAM (MOA)

5.1 Background

A groundwater investigation performed at the Lenox China facility between January 1987 and February 1990 by Geraghty & Miller (G&M) identified two TCE plumes emanating from an antecedent drum storage pad and degreaser sump. Both antecedent waste handling areas are no longer in use. A second on-site degreaser sump was removed from service in June 1993. Lenox initiated a quarterly groundwater monitoring program to delineate and track the TCE plumes identified by G&M. The monitoring results were also used to design the GWCAS.

5.2 Field Procedures

Groundwater samples were collected from fifteen monitoring wells at the Lenox facility and along White Horse Pike as part of the regularly-scheduled monitoring program on July 18-22, 2005. Samples were collected from two additional wells, MW-12D and MW-14D, for the purpose of analyzing VOC concentrations in the deep water-bearing zone. All sampling was performed in accordance with the most recently revised (April 1996) GWSAP and SGWSAP approved by the NJDEP.

Each well used to monitor the TCE remediation system contains a three-quarter-inch inner-diameter pump column attached to a one-foot section of well screen. The bottom of the pump column screen is set approximately two feet above the top of the well screen to ensure that the total volume of standing water in the well casing is removed during purging. To purge the wells, a peristaltic pump was attached to the top of the pump column using drinking-water grade polyethylene tubing. Three to five times the volume of standing water in each well was removed and field parameters (pH, specific conductivity, temperature and dissolved oxygen) were monitored during purging. The field parameter data is provided on the well sampling logs in Appendix A. Samples for metals analysis were collected directly from the discharge of the peristaltic pump. A new section of tubing was used for each well to avoid cross-contamination. Samples for VOC analysis were collected with 60 cc Teflon bailers dedicated to each well.

Unfiltered samples were analyzed for VOCs, iron, zinc, lead, TDS and TSS. Filtered samples were analyzed for iron, zinc and lead. MW-12D and MW-14D were analyzed for VOCs only. Field blank and duplicate samples collected during the monitoring program and a trip blank supplied by the laboratory were analyzed for quality assurance purposes. All analyses were performed by Accutest Laboratories, located in Dayton, New Jersey (NJDEP certification No. 12129).

5.3 Groundwater Monitoring Results

The groundwater analytical data is summarized in Tables 1, 2, 3 and 4, Section 5. The extent of TCE in groundwater during the July 2005 monitoring round is shown on Figure 4. The laboratory data reports are provided in Appendix C, which is bound separately.

The July 2005 monitoring results are summarized below:

- For wells sampled on a quarterly basis, TCE concentrations increased in wells MW-10, MW-77 and MW-78 since the last monitoring round. The largest increase occurred in well MW-10 (5.1 μg/l in April 2005 to 5.6 μg/l in July 2005).
- For wells sampled on a quarterly basis, TCE concentrations decreased in wells MW-12S, MW-12D, MW-15, MW-25, B-31, B-59, MW-76, MW-79A and MW-81 since the last monitoring round. The largest decrease occurred in wells B-31 (6.3 μg/l in April 2005 to 4.8 μg/l in July 2005) and MW-79A (5.5 μg/l in April 2005 to 4.0 μg/l in July 2005).
- TCE concentrations remained effectively unchanged at less than the laboratory reporting limit in wells MW-1, MW-13, MW-14D, MW-75 and MW-80.
- Cis-1,2-dichloroethene was detected in the samples from wells MW-10, MW-12D, MW-77, MW-78 and MW-79A at concentrations ranging from 0.81 J μg/l in MW-10 to 1.8 μg/l in MW-79A. Trans-1,2-dichloroethene was detected in the sample from well MW-

 79\AA at a concentration of 0.40 J $\mu\text{g/l}$. No other TCE breakdown products were detected above laboratory reporting limits in any samples.

- Iron was detected in the unfiltered samples at concentrations ranging from less than the laboratory reporting limit of $100 \mu g/l$ to $763 \mu g/l$, with the highest concentration detected in the sample from MW-75. Iron was not detected in any of the filtered samples above the laboratory reporting limit of $100 \mu g/l$.
- Lead was detected in the unfiltered samples at concentrations ranging from less than the laboratory reporting limit of 3.0 μg/l to 8.8 μg/l, with the highest concentration detected in the sample from MW-85, the QAQC duplicate of MW-75. Lead was detected in the filtered samples from MW-15 (4.8 μg/l) and MW-81 (5.4 μg/l). No other filtered samples contained lead at concentrations exceeding the laboratory reporting limit of 3.0 μg/l
- Zinc was detected in the unfiltered samples at concentrations ranging from less than the laboratory reporting limit of 20 μg/l to 113 μg/l, with the highest concentration detected in the sample from MW-25. Zinc was detected in the filtered samples at concentrations ranging from less than the laboratory reporting limit of 20 μg/l to 116 μg/l, with the highest concentration also detected in the sample from MW-25.
- TDS concentrations ranged from 33 mg/l (MW-75) to 260 mg/l (MW-10). TSS concentrations ranged from less than the laboratory reporting limit of 4.0 mg/l to 16.0, which was detected in the sample from well MW-78.
- There was good agreement between analyte concentrations in the field and duplicate samples (MW-85) from well MW-75.
- TCE, iron, lead, zinc, TDS and TSS were not detected in the field blank samples at concentrations exceeding their respective laboratory reporting limits. No VOCs were detected in the trip blanks at concentrations exceeding laboratory reporting limits.

• Chloroform was detected in the samples from a number of wells, at concentrations ranging from 0.35 J μ g/l (B-31) to 3.8 μ g/l (MW-81). Chloroform was not detected in the field or trip blanks and is not considered a site-related compound.

The monitoring data indicates that since the last monitoring round, TCÉ concentrations in samples from the sentinel wells along White Horse Pike increased in wells MW-77 and MW-78, decreased in wells MW-76 and MW-79A, and remained the same in well MW-75 at less than the laboratory reporting limit. The greatest change in concentration occurred at well MW-79A, which decreased from $5.5 \,\mu g/l$ in April 2005 to $4.0 \,\mu g/l$ in July 2005.

LENOX CHINA FACILITY AND ADJACENT AREA POMONA, NEW JERSEY

TABLE 1 SECTION 5

SUMMARY OF TCE CONCENTRATIONS IN GROUNDWATER - OCTOBER 2002 THROUGH JULY 2005

Well	Apr. 27-29, 2004	Jul. 22-26, 2004	Oct. 18-20, 2004	Jan. 19-21, 2005	April 19-21, 2005	July 18-22, 2005
MW1	<0.19	<0.20	<0.20	<0.20	<0.20	<0.15
MW10	3.9	6.9	7.0	5.3	5.1	5.6
MW12S	1.1	1.0	0.86 Ј	1.1	1.2	1.0
MW12D	5.4		6.9	6.7	7.0	
MW13	<0.19	<0.20	<0.20	<0.20	<0.20	<0.15
MW-14D	-		<0.20	<0.20	<0.20	<0.15
MW15	0.69 J	0.46 J	<0.20	0.88 J	0.64 J	<0.15
MW23	8.9		_	_	7.9	
MW25	0.39 J	<0.20	<0.20	<0.20	0.41 J	<0.15
B31 (MW27)	8.5	7.7	7.7	5.6	6.3	4.8
B32 (MW28)	8.5	_	-		5.3	4.0
B53	6.7	_	_	ی	4.4	
B54	117	·_	<u>.</u>	_	88.3	
B59	0.46 J	0.40 J	<0.20	<0.20	0.61 J	<0.15
B66	6.3	_	-	0.20	35.8	~0.13
B71	2.8	_]			1.2	
MW75	<0.19/<0.19	<0.20/<0.20	<0.20/<0.20	<0.20/<0.20	<0.20/<0.20	<0.15/<0.15
MW76	0.30 J	0.27 J	<0.20	0.36 J	0.41 J	<0.15/
MW77	1.3	1.5	1.8	1.9	1.8	1.9
MW78	1.2	1.6	1.8	2.0	2.2	2.3
MW79A	5.2	5.4	5.8	. 7.0	5.5	4.0
MW80	<0.19	<0.20	<0.20	<0.20	<0.20	4.0 <0.15
MW81	0.27 J	<0.20	<0.20	<0.20	0.33 J	<0.15
GAC Influent	5.9	6.1	4.9	4.4	4.7	
GAC Effluent	<0.5	<0.5	<0.5	0.6	4.7 <0.5	4.8
GAC Mid-Vessel	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5

Notes:

All samples analyzed by USEPA Method 624, 601 or 502.2/524.2.

All concentrations are presented in micrograms per liter (ug/l).

- = Not analyzed J = Estimated concentration

Values in **bold** font exceed the site specific Groundwater Quality Criteria for TCE (1.0 ug/l).

Table 1, Section 5 Continued...

Well	Oct. 15-17, 2002	Jan. 29-30, 2003	Apr. 14-16, 2003	Jul. 22-24, 2003	Oct. 28-30, 2003	Jan. 21-22, 2004
MWI	<0.15	<0.15	<0.19	<0.19	· <0.19	<0.19
MW10	6.8	3.9	<0.19	<0.19	5.8	3.0
MW12S	1.7	1.6	<0.19	<0.19	1.3	1.3
MW12D	-	-	<0.19	-		
MW13	<0.15	<0.15	<0.19	<0.19	<0.19	<0.19
MW15	0.59	2.2	1.3			
MW23	_	-	<0.19	<0.19	0.67 J	0.96.
MW25	3.4	2.5	1.5	: •	-	0.50
B31 (MW27)	6.6	24.4	26.1	1.1	0.86 J	<0.19
B32 (MW28)	-	_	3.4	15.7	10.7	10.0
B53	_	_	10.3		10.7	
B54	-	-	75.4	· :		
B59	<0.15	0.62 J	0.71 J	_	_	
B66 .	-	-	37.7	0:96 J	<0.19	<0.19
B70A	-	_			-0.15	40.13
B71	-]	_	1.2	; _	_	
MW75	<0.15/<0.15	<0.15/<0.15	<0.19/<0.19	<0.19/<0.19	<0.19/<0.19	<0.19/<0.19
MW76	<0.15	0.39 Ј	<0.19	<0.19	<0.19	<0.19/<0.19
MW77	1.9	2.3	1.9	0.67 J	1.7	1.4
MW78	1.0	1.7	1.8	1.1	1.4	1.3
MW79A	3.7	6.4	3.8	<0.19	6.0	5.4
MW80	<0.15	<0.15	<0.19	<0.19	<0.19	<0.19
MW81	0.53	0.50 J	<0.19	<0.19	<0.19	<0.19
GAC Influent	7.6	5.6	9.91	20.22	7.6	
GAC Effluent	<0.26	<0.26	<0.26	<0.26	<0.5	4.5
GAC Mid-Vessel	<0.26	<0.26	0.37	<0.26		<0.5 <0.5

Notes:

All samples analyzed by USEPA Method 624, 601 or 502.2/524.2.

All concentrations are presented in micrograms per liter (ug/l).

Values in **bold** font exceed the site specific Groundwater Quality Criteria for TCE (1.0 ug/l).

^{- =} Not analyzed J = Estimated concentration

LENOX CHINA FACILITY AND ADJACENT AREA POMONA, NEW JERSEY

TABLE 2 SECTION 5

TCE AND ASSOCIATED BREAKDOWN PRODUCT CONCENTRATIONS, JULY 18-22, 2005

					
Well	TCE	cis-DCE	trans-DCE	1,1 - DCE	Vinyl Chloride
MW-1	<0.15	<0.17 /	<0.28 ~	<0.49	<0.13
MW-10	5.6 /	0.81 J	<0.28	<0.49 ✓	<0.13 ✓
MW-12S	1.0 🗸	<0.17 /	<0.28 ✓	<0.49 v	<0.13
MW-12D	6.4	1.1 🗸	<0.28 🗸	<0.49 🗸	<0.13 ~
MW-13	<0.15 🗸	<0.17 /	<0.28	<0.49 ~	<0.13 ~
MW-14D	<0.15 🗸	<0.17 /	<0.28 🗸	<0.49 ~	<0.13
MW-15	<0.15 /	<0.17 ✓	<0.28 ✓	<0.49 ~	<0.13
MW-25	<0.15 🗸	<0.17 ✓	<0.28 ✓	<0.49 🗸	<0.13 🗸
B-31	4.8 ✓	<0.17 ✓	<0.28	<0.49 🗸	<0.13
B-59	<0.15 🗸	<0.17 ✓	<0.28 ✓	<0.49	<0.13
MW-75	<0.15 🗸	<0.17 ✓	<0.28 ✓	<0.49	<0.13 🗸
MW-85 (Dup MW-75)	<0.15 V	<0.17 ✓	<0.28 ✓	<0.49 /	<0.13
MW-76	<0.15	<0.17 ✓	<0.28 ✓	<0.49 ✓	<0.13 ✓
MW-77	1.9	1.3 🗸	<0.28 ~	<0.49 🗸	<0.13
MW-78	2.3 🗸	0.85 J ✓	<0.28 ✓	<0.49 🗸	<0.13 🗸
MW-79A	4.0 🗸	1.8 🗸	0.40 J 🗸	<0.49 /	<0.13 🗸
MW-80	<0.15 🗸	<0.17	<0.28 ✓	<0.49 ∨	<0.13
MW-81	<0.15 🗸	<0.17 ✓	<0.28 ✓	<0.49 /	<0.13 ×

Notes:

All concentrations are presented in micrograms per liter (µg/l).

J = Estimated concentration.

Values in **bold** exceed the site specific Groundwater Quality Criteria for TCE (1.0µg/l).

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 3 SECTION 5

INORGANIC ANALYTE CONCENTRATIONS, JULY 2005

Well No.	MW-1	MW-10	MW-12S₄	MW-13	MW-15	MW-25	B-31	B-59
Date Sampled	7/18/05	7/18/05	7/21/05	7/21/05	7/21/05	7/21/05	7/21/05	7/21/05
Metals (μg/l)	:							
Iron (Unfiltered)	750	<100	<100	<100	209	<100	<100	<100
Iron (Filtered)	<100	<100	<100	<100	<100	<100	<100	<100
Lead (Unfiltered)	<3.0	<3.0	\$378	3.0	£5 <u>73</u> 1	<3.0	<3.0	<3.0
Lead (Filtered)	<3.0	<3.0	<3.0	<3.0	4 4.8	<3.0	<3.0	<3.0
Zinc (Unfiltered)	<20	<20	<20	<20	84.8	113	68.5	<20
Zinc (Filtered)	<20	<20	<20	*31 / 9	81.3	116	67.2	<20
TDS (mg/l)	93	260	119	95	179	71	78	78
TSS (mg/l)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0

Notes:

 $\mu g/l = Micrograms$ per liter. mg/l = Milligrams per liter.

Values in **bold** exceed the site specific Groundwater Quality Criteria for Lead (10 µg/l) or Zinc (36.7 µg/l).

Table 3, Section 5 Continued . . .

Well No.	MW-75	³ MW-85**	•MW=76>	MW-77	MW2783	MW=79Aa	MW-80	MW-81
Date Sampled	7/21/05	7/21/05	7/21/05	7/21/05	7/21/05	7/21/05	7/21/05	7/21/05
Metals (μg/l)								
Iron (Unfiltered)	763	✓ 647	· <100	√ <100	✓ 676	✓ <100	✓ <100	< 100 × < 100
Iron (Filtered)	<100	✓ <100	✓ <100	× <100	✓ <100	<100	✓ <100	· <100
Lead (Unfiltered)	7.8	× 7818	√ § <u>₹</u> 6	√ <3.0	√ €6.7	✓ <u>**3</u> *1	✓ <3.0	<3.0
Lead (Filtered).	<3.0	✓ <3.0	✓ <3.0	✓ <3.0	√ <3.0	√ <3.0	✓ <3.0	√ £574
Zinc (Unfiltered)	<20	✓ <20	✓ <20	√ <20	√ <u>27</u> 8	i√ <20	✓ <20	J 52.3
Zinc (Filtered)	<20	✓ _. <20	✓ <20	✓ <20	✓ <20	√ < ₂₀	✓ <20	· <20
TDS (mg/l)	33	√ 54	· 120	✓ 74	√ 68	√ 147	· 133	✓ 68
TSS (mg/l)	13	✓ 12	✓ <4.0	√ <4.0	√ 16	√ 6	· <4.0	√ <4.0

Notes:

 $\mu g/l = Micrograms per liter.$

mg/l = Milligrams per liter.

Values in **bold** exceed the site specific Groundwater Quality Criteria for Lead (10 µg/l) or Zinc (36.7 µg/l).

^{*} MW-85 is duplicate of MW-75.

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 4 SECTION 5

QUALITY ASSURANCE/QUALITY CONTROL SAMPLES, JULY 18-22, 2005

Sample ID Sample Matrix	FB Field Blank	FB-1	FB-2	ТВ	TB-1
Date	7/18/2005	Field Blank 7/21/2005	Field Blank 7/22/2005	Trip Blank 7/18/2005	Trip Blank 7/22/2005
Trichloroethene	<0.15	<0.15	<0.15	-	<0.15
Iron (Unfiltered)	<100	<100	<100	-	-
Iron (Filtered)	<100	<100	<100	-	-1
Lead (Unfiltered)	<3.0	<3.0	<3.0	-	-
Lead (Filtered)	<3.0	<3.0	<3.0	-	-
Zinc (Unfiltered)	<20	<20	<20	-	-
Zinc (Filtered)	<20	<20	<20	-	-
TDS (mg/l)	<10	<10	<10	·	-
TSS (mg/l)	<4.0	<4.0	<4.0	-	-

Notes:

All concentrations presented in micrograms per liter ($\mu g/l$), unless otherwise noted. mg/l = Milligrams per liter.

- = Not Analyzed

6.0 SOLID WASTE MANAGEMENT UNIT NO. 2 AND AREA OF CONCERN GROUNDWATER MONITORING PROGRAM (MOA)

The groundwater sampling data from monitoring wells MW-10, MW-17, MW-72, MW-73 and MW-74 are used to assess groundwater quality downgradient of Solid Waste Management Unit (SWMU) No. 2 and the Area of Concern (AOC). Unfiltered and filtered samples from these wells were analyzed for lead and zinc. The groundwater analytical data is summarized in Table 1, Section 6. The laboratory data reports are included in Appendix C.

The July 2005 monitoring results are summarized below:

- Lead was detected in the unfiltered samples at concentrations ranging from less than the laboratory reporting limit of 3.0 to 26.2 µg/l, with the highest concentration detected in the sample from MW-73. Lead was detected in the filtered samples at concentrations ranging from less than the laboratory reporting limit of 3.0 to 7.3 µg/l, with the highest concentration detected in the sample from MW-73.
- Zinc was detected in the unfiltered samples at concentrations ranging from less than the laboratory reporting limit of 20 to 108 µg/l, with the highest concentration detected in the sample from MW-17. Zinc was detected in the filtered samples at concentrations ranging from less than the laboratory reporting limit of 20 to 106 µg/l, with the highest concentration detected in the sample from MW-17.

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 1 SECTION 6

SWMU NO. 2 AND AOC GROUNDWATER MONITORING RESULTS, JULY 2005

Well No. MW-10		MW-17	MW-72	MW-73	MW-74
Date Sampled	7/18/05	7/21/05	7/22/05	7/22/05	7/22/05
Lead (Unfiltered)	<3.0	<3.0	951	26.2	15.7
Lead (Filtered)	<3.0	<3.0	√ ≈3 :5	7.3	₹ <3.0
Zinc (Unfiltered)	<20	108	✓ <20	✓ 70.7	58.5
Zinc (Filtered)	<20	106	✓ <20	✓ 42.3	√ §26 <u>§</u> 3

Notes:

All concentrations presented in micrograms per liter (µg/l).

Values in **bold** exceed the site specific Groundwater Quality Criteria for Lead (10 μ g/l) and Zinc (36.7 μ g/l).

7.0 CLASSIFICATION EXCEPTION AREA/ STATISTICAL ANALYSIS PROGRAM (MOA)

The groundwater sampling data from MW-1, MW-3F, MW-6F, MW-12S, MW-13, MW-73, MW-74, MW-75 and MW-79A is used to assess groundwater quality downgradient of the Lenox facility. Unfiltered and filtered samples from these wells were analyzed for lead and zinc. The groundwater analytical results are summarized in Table 1, Section 7. The laboratory data reports are included in Appendix C.

The July 2005 results for the Classification Exception Area (CEA) monitoring program are summarized below:

- Lead concentrations in the unfiltered samples ranged from less than the laboratory reporting limit of 3.0 μ g/l to 26.2 μ g/l (MW-73). Lead concentrations in the filtered samples ranged from less than the laboratory reporting limit of 3.0 μ g/l to 7.3 μ g/l (MW-73).
- Zinc concentrations in the unfiltered samples ranged from less than the laboratory reporting limit of 20 μ g/l to 70.7 μ g/l (MW-73). Zinc concentrations in the filtered samples ranged from less than the laboratory reporting limit of 20 μ g/l to 42.3 μ g/l (MW-73).
- TCE concentrations in all monitoring wells, as summarized in Table 1, Section 5, ranged from less than the laboratory reporting limit of 0.20 μg/l to 6.4 μg/l, with the highest concentration in the sample from well MW-12D. TCE concentrations in the sentinel wells along the White Horse Pike ranged from less than the 0.15 μg/l laboratory reporting limit in well MW-75 to 4.0 μg/l in well MW-79A.

In accordance with the CEA monitoring program, the sentinel well TCE monitoring data collected during the past eight consecutive quarters was statistically analyzed using the Mann-Whitney U-Test. The results are summarized in Table 2, Section 7. The null hypothesis was accepted at the 90 percent confidence level (U>3) for all five wells: MW-75, MW-76, MW-77,

MW-78 and MW-79A, indicating that TCE concentrations at these wells have statistically remained the same or increased over the past eight monitoring periods. MW-75 has not contained any detectable concentrations of TCE for the past twenty-four consecutive quarters.

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 1 SECTION 7

CEA GROUNDWATER MONITORING RESULTS, JULY 2005

Well No.	MW-1	MW-3F	MW-6F	/MW=12S	€MW≛13+	
Date Sampled	7/18/05	7/22/05	7/22/05	7/21/05	7/21/05	
Lead (⊍nfiltered)	<3.0	/ 4.6	3.6	✓ \$3.8	· <3.0	
Lead (Filtered)	<3.0	/ ভি.ত	<3.0	<3.0	<3.0	
Zinc (Unfiltered)	<20	<20	✓ <20	✓ <20	✓ <20	
Zinc:(Eiltered),	<20	✓ <20	✓ <20	✓ <20	· 3159	

Well No. MW-73		MW-74	MW-75%	MW-79A	
Date Sampled	7/22/05	7/22/05	7/21/05	7/21/05	
Lead (Unfiltered)	26.2	15.7	V 78	7 31	
Eead (Filtered)	<i>57.</i> 13	<3.0	✓ <3.0	✓ <3.0	
Zinc (Unfiltered)	70.7	58.5	✓ <20	√ <20 °	
Zinc (Filtered)	42.3	✓ 26.3	√ <20	√ <20	

Notes:

All concentrations presented in micrograms per liter ($\mu g/l$).

Values in **bold** exceed the site specific Groundwater Quality Criteria for Lead (10 µg/l) and Zinc (36.7 µg/l).

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 2 SECTION 7

MANN-WHITNEY STATISTICAL TEST SUMMARY

	Eighth Quarter Ending Date					
	Apr-05			Jul-05		
Sentinel Well	Ua	Ub	U	Ua	Ub	U
MW-75	16	0	8	16	0	8
MW-76	14	11	12.5	12	8	10
MW-77	-	-	15	16	-	16
· MW-78	-	-	16	16	-	16
MW-79A	13	12	12.5	10	-	10

Notes:

Null hypothesis will be accepted at the 90% confidence level when the calculated U value is greater than 3.

If two or more concentrations are identical the test is calculated twice, once ranking the identical "a" concentrations first (Ua) and once ranking the "b" concentrations first (Ub). The average of these values is the actual "U". (N.J.A.C. 7:26 E App. C)

8.0 RESIDENTIAL WELL SAMPLING

Following discussions with NJDEP and USEPA in 2001, Lenox agreed to develop and coordinate a sampling program with the Atlantic County Department of Public Health (ACDPH) to assess and track TCE and breakdown product concentrations at residential wells located downgradient of the White Horse Pike (Route 30). Lenox initiated the sampling during the fourth quarter of 2001 at the first three homes immediately downgradient of the White Horse Pike that were not served by public water. A fourth residence was added in January 2003 and is included in the list below. In accordance with the plan developed by Lenox, the sampling results are provided to ACDPH, which in turn provides any significant data directly to the homeowners and the USEPA.

The residences covered by the current quarterly sampling program are shown on Figure 5 and are identified as follows:

- RESW-1, 360 S. Mannheim Avenue
- RESW-2, 357 S. Mannheim Avenue
- RESW-3, 353 S. Mannheim Avenue
- RESW-4, 344 S. Mannheim Avenue

Private wells at homes further north and west of Mannheim Avenue are not included in the sampling program due to their distance from White Horse Pike. The wells were sampled on April 20, 2005. Please note that RESW-3 was not sampled during this period. Repeated attempts were made to contact the homeowner but no response was obtained and no working sampling ports are available on the outside of the house. The residential well samples were analyzed using EPA method 524.2 for drinking water. A trip blank was included in the sample shipment and also analyzed using the same method. The current and historical sampling data is summarized in Tables 1 and 2, Section 8. Laboratory data reports are included in Appendix C. The second quarter monitoring results are summarized below:

- TCE was detected at a concentration of 0.43 J μg/l in RESW-1. TCE was not detected in the other samples at concentrations above the laboratory reporting limit. Cis-1,2-dichloroethane, a TCE breakdown product, was detected in the sample from RESW-1 at a concentration of 0.093 J μg/l. TCE breakdown products were not detected in any other samples at concentrations exceeding the laboratory reporting limits.
- Chloroform was detected in three samples at concentrations of 6.5 μ g/l (RESW-1), 0.29 J μ g/l (RESW-2) and 0.16 J μ g/l (RESW-4). Chloroform is not considered a site-related compound.
- Methyl tert-butyl ether (MTBE) was detected in the samples from RESW-2 (0.46 J μ g/l) and RESW-4 (1.2 μ g/l). MTBE is not considered a site-related compound.
- Benzene and p-dichlorobenzene were detected in the sample from RESW-2 at concentrations of 0.31 J μ g/l and 0.087 J μ g/l, respectively. Benzene and p-dichlorobenzene are not considered to be site-related compounds.
- Carbon disulfide was detected in the samples from RESW-2 (0.24 J $\mu g/l$) and RESW-4 (0.089 J $\mu g/l$). Carbon disulfide was also detected in the trip blank (TB-2) at a concentration of 0.087 J $\mu g/l$. Carbon disulfide is not considered to be a site-related compound.
- No analytes other than carbon disulfide were detected in the trip blank at concentrations exceeding laboratory reporting limits.

The RESW-1 residence was connected to the municipal water supply system on August 20, 2002.

LENOX CHINA POMONA, NEW JERSEY

TABLE 1 SECTION 8

RESIDENTIAL WELL SAMPLING RESULTS, JULY 22, 2005

Well ID	RESW-1	RESW-2	RESW-4	TB-2
Acetone	<u> </u>	-	-	-
2-Butanone	-	 -	-	- ′
Benzene	-	0.31 J ✓	-	-
Bromobenzene	-	<u> </u>	-	-
Bromochloromethane	-	_	-	-
Bromodichloromethane	-	-	-	-
Bromoform	1 -	-	-	-
Bromomethane	l -	-	-	-
n-Butylbenzene	-	_ :	-	-
sec-Butylbenzene		_]	_	-
tert-Butylbenzene	_	_	_	-
Carbon disulfide	_	0.24 J 🗸	0.089 J ✓	0.087 J ✔
Chlorobenzene	_ `	<u>.</u>	-	_
Chloroethane	_	_	_	
Chloroform	6.5	0.29 J 🗸	0.16 J 🗸	_
Chloromethane	"."	0.2337	\	_
o-Chlorotoluene	_`	_		
p-Chlorotoluene		_		_
Carbon tetrachloride		[_
1.1-Dichloroethane		[_
1,1-Dichloroethene	-	[<u>-</u>
1,1-Dichloropropene	-		•	
1,2-Dibromo-3-chloropropane		<u> </u>	•	_
1,2-Dibromoethane	-	[-	· •
1,2-Dichloroethane			-	<u>-</u>
11 '		-	-	· -
1,2-Dichloropropane 1,3,-Dichloropropane	-	-	-	-
	-	-	-	-
2,2-Dichloropropane	-	-	-	-
Dibromochloromethane Dibromomethane	_	-	-	-
	-	-	-	
Dichlorodifluoromethane	-	-	-	-
Cis-1,3-Dichloropropene	-	-	-	-
m-Dichlorobenzene		-	-	-
o-Dichlorobenzene	- 1	0.007.7	-	-
p-Dichlorobenzene	-	0.087 J√		-
Trans-1,2-Dichloroethene	0.003.5	•	-	-
Cis-1,2,-Dichloroethene	0.093 J 🗸	- }	-	-
Trans-1,3-Dichloropropene	-	•	-	-
Ethylbenzene	-	-	- [-
Hexachlorobutadiene	-	- 1	-	-
Hexane	-	-	-	-
2-Hexanone	- '	-'	-	-
Isopropylbenzene	- [- }	-	-
p-Isopropylbenzene	-	-	-	-
Methylene Chloride	-		1.2	-
Methyl Tert Butyl Ether	-	0.46 J ✓	1.2	-
4-Methyl-2-Pentanone	-	-	-	- [
Naphthalene	-	-	-	-
n-Propylbenzene	-	-	-	-
Styrene	-	-	-	- [
1,1,1,2-Tetrachloroethane	-	- }	-	-
1,1,1-Trichloroethane	-	-	-	- 1
1,1,2,2-Tetrachloroethane	-	-]	-	-
1,1,2-Trichloroethane	-	- 1	-	- 1
1,2,3-Trichlorobenzene	-	-	-	- [
1,2,3-Trichloropropane	-	-	-	-
1,2,4-Trichlorobenzene	-	-	-	-
1,2,4-Trimethylbenzene	-	-	-	-]
1,3,5-Trimethylbenzene	- •	-	-	-
Toluene	- ,	-	- [-
Trichloroethene	0.43 J√	-	-	-
Trichlorofluoromethane	-	-	-	-
Vinyl Chloride	-	-	-	-
Xylenes, total	-	-		<u>-</u>
Notes: All concentrations presented in r	nicrograms per	liter (vg/l)		 1

Notes: All concentrations presented in micrograms per liter (ug/l).

Residential samples and trip blank (TB-2) analyzed by EPA Method 524.2, Rev. 4.1

^{- =} Parameter not detected above laboratory detection limit.

LENOX CHINA POMONA, NEW JERSEY

TABLE 2 SECTION 8

HISTORICAL RESIDENTIAL WELL SAMPLING RESULTS THROUGH JULY 2005 (DETECTED COMPOUNDS ONLY)

Sample ID	Date	Acetone	Benzene	Carbon Disulfide	Chloro- form	Chloro- benzene	Cis-1,2- Dichloro ethene	m-Dichloro benzene	p-Dichloro benzene	Ethyl benzene	МТВЕ	Toluene	Trichloro ethene	Xylenes (total)
RESW-1	3/19/2002	-		-	5.0	-	-	-	-	•		-	1.4	-
	5/16/2002	-	-	- [3.6	-	-	_	_	<u>-</u>	_	-	1.5	_
	7/18/2002	-	-	-	4.1	-	-	-	-	-	-	_	1.2	-
	10/16/2002	-	-	-	4.2	-	-	_	- 1	-	0.29	-	0.88	
	1/29/2003	-	-	-	6.6	-	-	-	-	-	-	-	- '	-
	4/14/2003	-	-	-	4.9	-	-	_	_	-	-	-	0.56	-
	7/23/2003	-	-	- 1	5.5	-	-	_		-	_	-	1.1	-
ll i	10/30/2003	-	-	-	7.9	-	-	-	- .	-	- :	_	0.53	-
	1/21/2004		-	-	6.5	-	-	-	[-	-	_	-	0.54	_
	4/28/2004	-	-	-	7.2	-	-	-	-	-	-	-	0.65	-
	7/23/2004	-	-	-	6.6	-	-	-	-	-	1.4	-	0.39 J	-
	10/20/2004	-	-	-	8.5	-	-	-	-	-	0.19 J	-	0.21 J	-
<u> </u>	1/20/2005	6.6	-	-	6.6	-	-	-	-	0.16 J	0.70	0.065 J	0.50	0.62
:	4/20/2005	_	-	-	6.8	-	0.11 J	_	-	-	_	_	0.52	_
	7/22/2005				6.5		0.093 J 🗸	-	-	-	-	-	0.43 J√	_
RESW-2	3/19/2002	-	1.3	- 1	0.72	-	-	-	0.26	-			-	_
	5/16/2002	-	0.88	-	0.51	-	-	-	0.33	-	_	-	_	-
	7/18/2002	-	0.96	-	0.38	-	-	-	0.38	_	_	-	_	
	10/16/2002	-	1.4	-	0.29	-	-	0.071	0.33	_		. .	-	_
	1/29/2003	- '	1.4	-	0.25 J	-	-	<u> </u>	0.26 J	_	_	<u>-</u>	_	_
	4/14/2003	-	1.4	-	0.28 J	0.098 J	-	0.10 J	0.52	-	-	_	_	_
	7/23/2003	-	0.78	-	-	-	-	_	_	_	-	-	_	_
1	10/30/2003	-	0.52	-	0.68	-	-	-	0.31 J	_	_	_		-
	1/21/2004	-	0.60	-	0.49 J	-	_	ĺ -	_	_	_	_	_	-
	4/28/2004	-	0.55	1.2	0.52	-	_	_	_	_	_	_	_	_
	7/23/2004	-	0.29 J	-	0.52	-	_	_	_	_	0.20 J	_	_	_
	10/20/2004	-	0.22 J	-	0.40 J	_	_	_	0.14 J	_	-	_	_	_
	1/20/2005	-	0.30 J	-	0.29 J	_	_	_	0.099 J	<u>-</u>	0.088 J	_	_	_
	4/20/2005	-	0.24 Ј	-	0.39 J	-	_	_	0.19 J	_	3.000	_	_	
	7/22/2005	-	0.31 J✓	0.24 J✓	0.29 J√	_	_	_	0.087 J	_	0.46 J√		_	_

Notes:

All concentrations presented in micrograms per liter (ug/l).

- = Not detected above laboratory detection limit.

J = Estimated concentration. NS = Not sampled.

Values in **bold** font exceed the site specific Groundwater Quality Criteria for TCE (1.0 ug/l).

Table 2, Section 8 Continued...

Sample ID	Date	Acetone	Benzene	Carbon Disulfide	Chloroform	Chloro benzene	Cis-1,2- Dichloro ethene	m-Dichloro benzene	p-Dichloro benzene	Ethyl benzene	МТВЕ	Toluene	Trichloro ethene	Xylenes (total)
RESW-3	3/19/2002	-	-	-	3.1	-	-	-	-	-	-	-	-	-
	6/4/2002	-	-	-	2.7	-	-	-	-	-	-	-	-	-
	7/18/2002	-	-	-	2.6	-	-	-	-	-	-	-	_	_
	10/16/2002	-	-	-	2.4	-	-	-	-	-	-	-	-	-
	1/29/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/16/2003	-		_	2.4	· _	-	-	-	-	-	_	_	-
	7/23/2003			-	2.9	-	-	-	_ '		-	_	-	-
	10/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/21/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/28/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/23/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/20/2004	-	-	-	1.9	-	-	_] -	-	-	_	_	-
	1/20/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/20/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/22/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RESW-4	1/29/2003	-	-	-	0.29 J	~	-	-	-	-	1.3	-	-	-
	4/14/2003	-	-	-	0.22 J	-	_	-	-	-	1.3	-	-	-
	7/23/2003	-	-	-	-	-	_	-	_	- .	1.7		-	-
	10/30/2003	-	-	-	-		-	_	-	-	2.3	-	-	-
	1/21/2004	-	-	-	-	-	-	-	-	-	1.8	-	-	-
	4/28/2004	-	-	-	-	-	-	-	-	-	2.3	-	_	-
	7/23/2004	-	-	-	-	-	_	_		-	2.6	-	_	-
	10/20/2004	-	-	-	-	-	-		_	-	1.9	-	-	-
	1/20/2005	-	-	-	0.15 J	-	-	-	_	-	1.7	-	_	-
	4/20/2005	- '	-	-	0.14 J	-	_	-	_	-	1.4	_	-	_
	7/22/2005	_		0.089 J 🗸	0.16 J	-	_	_		-	1.2~	-	_	-

Notes:

Values in **bold** font exceed the site specific Groundwater Quality Criteria for TCE (1.0 ug/l).

All concentrations presented in micrograms per liter (ug/l).

^{- =} Not detected above laboratory detection limit.

J = Estimated concentration. NS = Not sampled.

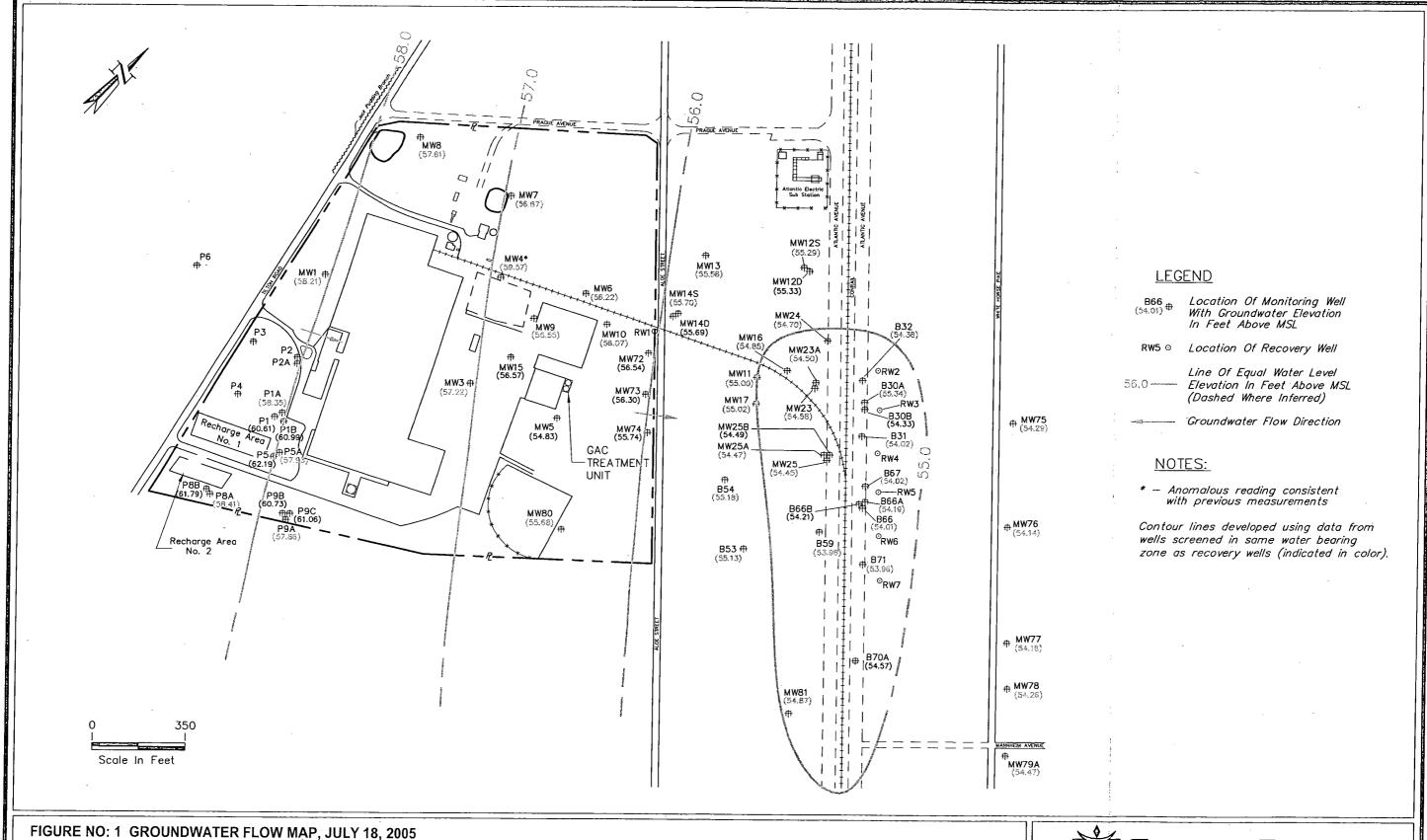
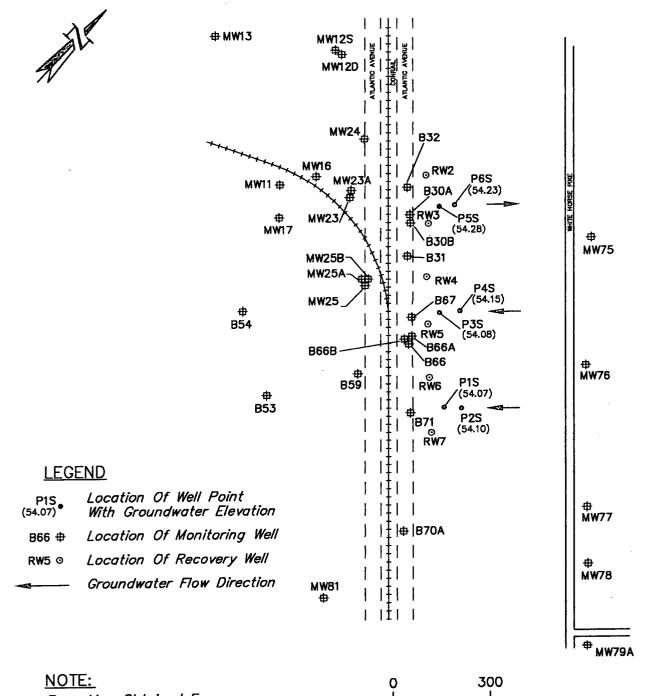
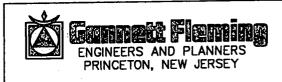



FIGURE NO: 1 GROUNDWATER FLOW MAP, JULY 18, 2005 LENOX CHINA POMONA, NEW JERSEY

Source: Base Map Obtained From Geraghty & Miller's August 1992 Groundwater Monitoring Report



Base Map Obtained From Geraghty & Miller's August 1992 Groundwater Monitoring Report.

FIGURE NO: 2 GROUNDWATER FLOW MAP, SHALLOW WELLS **JULY 18, 2005**

LENOX CHINA POMONA, NEW JERSEY

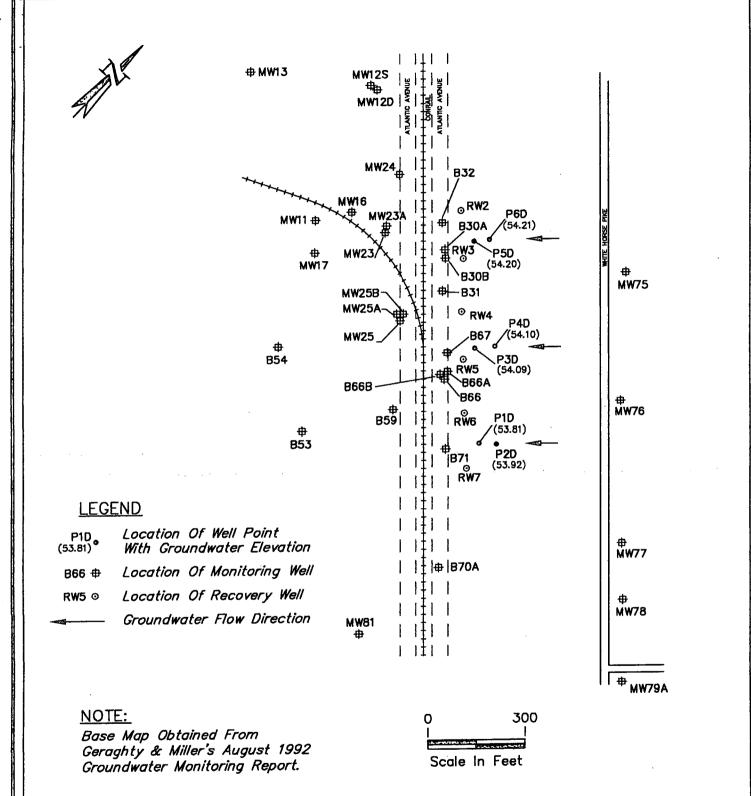
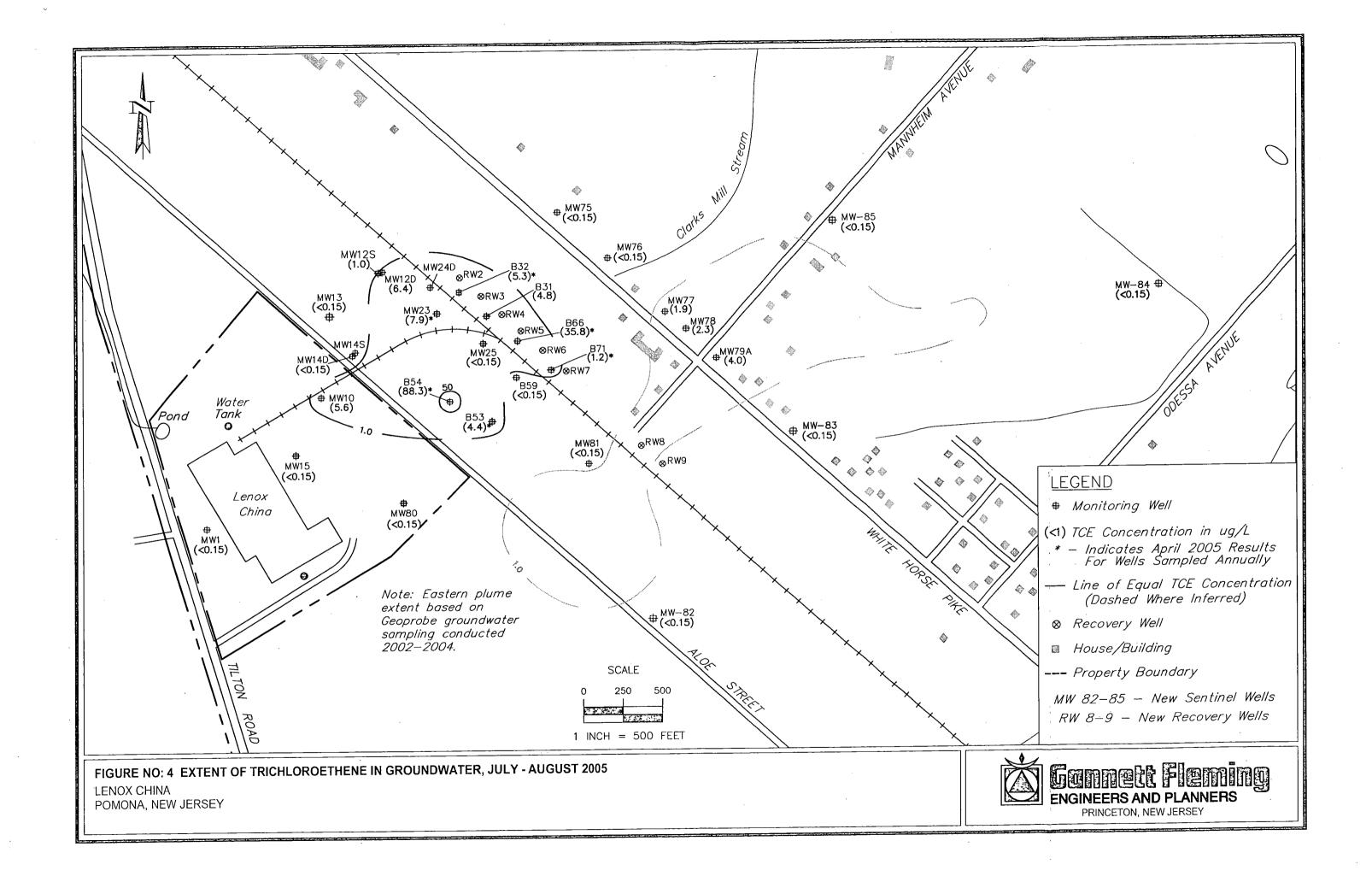



FIGURE NO: 3 GROUNDWATER FLOW MAP, DEEP WELLS
JULY 18, 2005

LENOX CHINA POMONA, NEW JERSEY

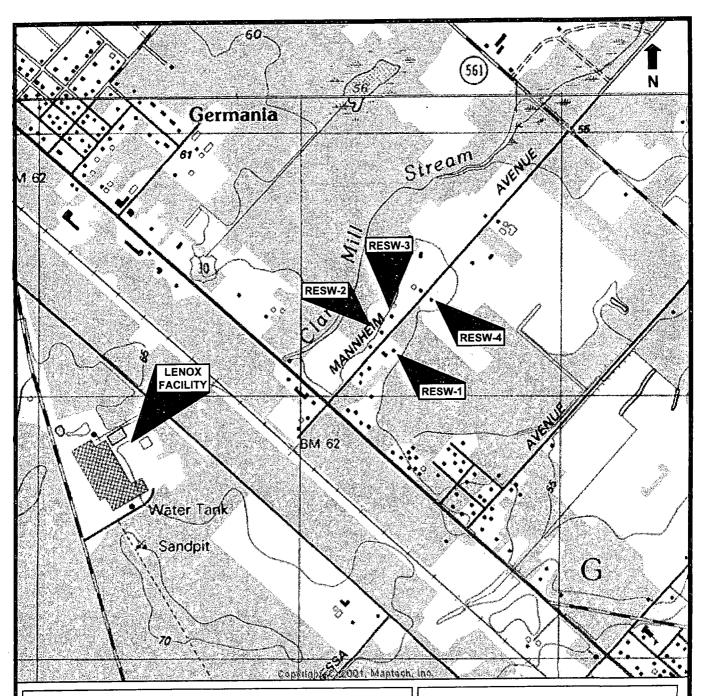


FIGURE NO: 5
RESIDENTIAL WELL SAMPLING LOCATIONS
LENOX CHINA
POMONA, NEW JERSEY

Approximate Scale: 1 inch = 1,200 feet

Source Map: USGS 7.5 Minute Series, Topo Map - Pleasantville, NJ 1989

ENGINEERS AND PLANNERS PRINCETON, NEW JERSEY

APPENDIX B

CONTOUR MAP REPORT FORM.
JULY 18, 2005

Project No.: 43838.021

Project Name: <u>Lenox China, Pomona: TCE Monitoring</u>

Drawing Description: Groundwater Flow Map, July 18, 2005

Contour Map Reporting Form

	Contour Map Reporting & Orm			
	reporting form shall accompany each ground water contour map subnets as necessary.	nittal.	Use	additional
1.	Did any surveyed well casing elevations change from the previous sampling events?	Yes		No 🛚
	If yes, attach new "Well Certification - Form B" and identify the reason for the elevation Change (damage to casing, installation of recovery system in monitoring well, etc.)			
2.	Are there any monitoring wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen?	Yes	\boxtimes	No 🗌
	If yes, identify these wells. P-1A, P-5A, P-8A, P-9A, MW-3, MW-6, MW-9, MW-10, MW-11, MW-12S, MW-13, MW-14S, MW-16, MW-17, MW-23, MW-23A, MW-24, MW-25, MW-25A, B30A, MW-75, MW-76, MW-77, MW-78, MW-79A, B-31, B-32, B-53, B-54, B-59, B-66, B-66A, B-67, B-71			
3.	Are there any monitoring wells present at the site but omitted from the contour map?	Yes	\boxtimes	No 🗌
	Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.			
	Wells omitted from the map are screened in a shallower or deeper groundwater interval than that screened by the recovery well system.			
!.	Are there any monitoring wells containing separate phase product during this measuring event? Were any of the monitoring wells with separate phase product included in the ground water contour map?			No ⊠ No ⊠

If yes, show the formula used to correct the water table elevation.

Projec	et No.: 43838.021	Project Name: <u>Lenox China, Po</u>	mona: TCE M	onitoring
Draw	ing Description: Groundwater Flow Map, July 18, 20	<u>05</u>		
5.	Has the ground water flow direction chang previous groundwater contour map?	ed more than 45° from the	Yes 🗌	No 🗵
	If yes, discuss reason for change.			
6.	Has ground water mounding and/or depress ground water contour map?	sions been identified in the	Yes 🛚	No [
	Unless the ground water mound and/or dep ground water remediation system, disc occurrence.			
	-			
7.	Are the wells used in the contour map so bearing zone?	reened in the same water-	Yes 🛚	No [
	If no, justify inclusion of those wells.			
	· ·			
8.	Were the ground water contours computer generated, computer aided, or hand drawn?			
	If computer aided or generated, identify thused.	ne interpolation method(s)		

DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER RESOURCES

CN 029 Trenton, New Jersey 08625-029

SAMPLE COLLECTION AND PRESERVATION FORM

(To be completed by sampling crew)

BAC.	KGROUND								
1)	Facility Name:	Lenox China	· · · · · · · · · · · · · · · · · · ·						
2)	NJPDES Number:	NJ0086487		···					
3)	Facility Address:	Tilton Road, Pomo	ona, NJ 08240	<u></u>					
	·			·					
4)	Owner's Name:	Lenox China	· · · · · · · · · · · · · · · · · · ·						
5)	Owner's Address:	Tilton Road, Pomo	ona, NJ 08240						
SAM	PLING PLAN								
6)	Has a sampling and a stipulated under N. Yes X or No	J.A.C. 7:14A-6	-	this facility as					
7)	If yes, has the samp		en approved by the D	epartment?					
8)	If the sampling plan has not been submitted to the Department, attack with these submitted forms.								
SAMI	PLE COLLECTION								
9)	Sample Date/Time: 7/	18/2005							
10)	Sampling Personnel(N	Jame/Title)	Affiliation	Phone					
	Robyn Myhre, Hydrogeologi	st	Gannett Fleming, Inc.	609-279-9140					
	Marty Hughes, Environmenta	1 Scientist	Gannett Fleming, Inc.	609-279-9140					

11)	Weather conditions at the time of sampling: Sunny, 85 degrees F
	<u> </u>
12)	Is there a designated level of protection, and if so, indicate: $A = B = C = C$ or $D = X = C$
STAT	TIC WATER LEVEL MEASUREMENT AND WELL EVACUATION
13)	What method was utilized to determine the static water level? Electrical (m-scope) X Stainless Steel Tape Sonic or Other (explain)
14)	Measuring Device Precise to: 0.01 feet
15)	Model Number: 101 Manufacturer: Solinst
16)	Was the water level indicator deconned between wells? Yes X or No
17)	Describe the decontamination procedure: <u>Deionized water rinse</u> , wipe with paper towel, final deionized water rinse, air dry
18)	Wells are to be purged three to five times prior to sampling. If wells are not purged as stated above, explain and justify the exact purge method used.
19)	Method used for well evacuation: Pump_X or Bailer
20)	If bailed to evacuate, what are the dimensions of the bailer?
21)	What is the volume capacity of the bailer? N/A
22)	Pump Type: Submersible Bladder Gas Piston Gas Displacement or Other X Explain: Peristaltic Pump
23)	Pump Model Number / Flow Rate: Randolph Pump Model 750/1-6 gpm
24)	Pump manufacturer: Randolph-Austin
25)	Describe decontamination method used to clean pump between wells: None - A new piece of tubing was used at each monitoring well

26)	Power source for pump: Gasoline Powered generator
27)	Was the gasoline transported in the same vehicle as the sample bottles, field and trip blanks, or bailers? Yes or No_ X
28)	Refer to the following chart for volume capacities for various wells per linear foot

<u>Casing Diameter</u>	<u>Gallons/Linear Foot</u>
2"	0.16
4″	0.65
6 "	1.47
8"	2 61

29) Complete the below chart regarding evacuation measurements.

Please note the following abbreviations:

TOC=elevation of top of casing; TDW=total depth of well from from top of casing; DTW=distance to water from top of casing; # of bail vols=number of bail volumes. TOC, DTW, and TDW Should be measured and/or calculated to the nearest 0.01 foot. Also note that if a mechanical pump is used for purging, indicate the total minutes of pumping time below. If a bailer is used for purging, indicate the total number of bail volumes. Attach additional sheets if necessary.

SEE TABLE QAQC1 ON PAGE 3A

Well Permit No./Owners Well No.	TOC	DTW	TOC-	TDW	gal. / Lin. ft.	Amount of H2O in Casing	Amount of H2O Purged	# of Bail Vols	Minutes pumping time	Time purge comp- lete	Time Sample Col- lected
							= .				

Table QAQC1 State of New Jersey Department of Environmental Protection Division of Water Resources Groundwater Sampling Data Collected July 18, 2005

Well Permit Number	Owners Well Number	TOC (Feet)	DTW (Feet)	TOC-DTW (Feet)	TDW (Feet)	Gallons per linear foot	Amount of Water in Casing (gallons)	Amount of Water Purged (gallons)	Number of Bail Volumes	Minutes pumping time	Time purge completed	Time sample collected
36-03025-2	MW-1	69.28	11.07	58.21	29.75	0.65	12.1	40	-	20	16:08	16:08
36-03027-9	MW-3	67.09	9.87	57.22	30.40	0.65	13.3	40	-	14	14:05	14:05
36-03119-4	MW-4	66.98	7.41	59.57	26.80	0.65	12.6	40	-	17	15:04	15:04
36-02913-0	MW-5	64.17	9.34	54.83	17.95	-	-	Not Sampled	-	-	-	-
36-03270-1	MW-6	65.08	8.86	56.22	30.75	0.65	14.2	45	-	19	16:43	16:43
36-07160-9	MW-9	69.51	12.96	56.55	31.15	0.65	11.8	40	-	20	14:34	14:34
36-07161-7	MW-10	63.51	7.44	56.07	29.30	0.65	14.2	45		17	17:07	17:07

SAMPLE COLLECTION AND PRESERVATION

30)	Matrices Sampled: Aqueous: Potable Well Monitoring WellX Surface Water Leachate Other Nonaqueous: Soil Sediment Other
31)	Dedicated Hose: Yes X or No
32)	Hose Construction: PVC Teflon Tygon Butyl Other X
33)	Sample Collection: (Time of collection for each well/sample should be indicated on the back of this page) See table QAQC1 on page 3A A) Bailer-construction: Teflon Stainless Steel PVC HDPE _X B) Beacon Bomb Sampler Size:oz. C) Other Explain:
34)	Lines used to lower bailer: Stainless Steel Cable/Leader Teflon PVC Rope Other 100% poly
35)	Are dedicated bailers used for each well? Yes X or No
36)	Are bailers: Laboratory cleaned Laboratory Name Field Cleaned Describe method:
	Disposable bailers used only once then discarded.
37)	Prior to use, are bailers, sample bottles, hoses, etc. Kept clean i.e., not placed in direct contact with ground, etc.: Yes X or No
38)	Are sample bottles supplied by laboratory? Yes_X or No
39)	Are sample preservation instructions supplied by laboratory? Yes X or No
40)	Are sample preservatives supplied by laboratory? Yes_X or No

41) Sample Preservation:

Constituent	Teflon top	Head	Refrig-	Acidified	Alkanized	Bottles
	in contact	Space	erated			
	with sample					
Volatile Organics	Yes	No	Yes	Yes	N/A	N/A
TOX	N/A	N/A	N/A	N/A	N/A	N/A
Extractable Organics	N/A	N/A	N/A	N/A	N/A	N/A
Metals	N/A	N/A	Yes	Yes	N/A	N/A
Cyanide	N/A	N/A	N/A	N/A	N/A	N/A
Phenols	N/A	N/A	N/A	N/A	N/A	N/A
Biological	N/A	N/A	N/A	N/A	N/A	N/A

Indicate below any other constituents to be analyzed and their forms of preservation: TDS, TSS, color - refrigerated
Were samples for metals analysis filtered in field? Yes X or No
Were samples for metals analysis filtered in laboratory? Yes or No_ X
Were field blanks taken? Yes X or No
Were trip blanks taken? Yes X or No
What parameters/analysis were performed on field and trip blanks? Volatile Organics X (FB,TB) Semi-volatile Pesticides PCBs Metals X (FB) Other TDS, TSS, color (FB)
Prior to sampling, was an equipment blank performed? YesNoX Sampling equipment is dedicated per well.
Prior to sampling each well, are disposable gloves worn? Yes X or No
If yes, are the gloves changed between wells? Yes X Or No

CHAIN OF CUSTODY		•									
51) Laboratory Nam	ne/Certificatio	on Number	Accutest /	12129							
52) Laboratory Address 2235 Route 130, Dayton, New Jersey 08810											
53) Laboratory rec	ceipt date and	time_7/19/05,	10:00		· .						
54) Attach Chain o	of Custody:	Yes <u>X</u>	or No								
Sample Number	Relinquished by	Received by	Time	Date	Reason for change of custody						
MW-1, MW-3, MW-4, MW-6, MW-9, MW-10, MW-2, FB, TB	R. Myhre	Accutest courier	10:00	7/19/05	Relinquished to lab						
					_						
AUTHENTICATION I certify under penalty of law that I have personally examined and am familiar with the information contained in this report, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete and meets the description specified in N.J.A.C. 7:14A-2.5(a)10, and 6.1 through 6.12. I am aware that there are significant penalties for submitting false information including the possibility of fine and											
imprisonment.				·							
Sampler											
Name/Title (printed											
Signature											
Company Name and Ad	ddress <u>Gar</u>	nnett Fleming, 20	02 Wall Stre	eet, Princeto	n, NJ 08540						

Notes:

- 1. The sampling team may use their own reporting forms only if the forms contain all the information required in this sample collection and preservation form.
- 2. If any of the items within this sample collection and preservation form vary for different monitor wells, the information must be documented within this form or as attachments to this form.

LABORATORY SAMPLE CHAIN OF CUSTODY/CHRONICLE FOR NJPDES COMPLIANCE MONITORING

Relinquisher of sample: (please print)
Name: Robyn myhre signature: Robyn myh
Comment Tage Tage
Company: 6 annett Fleming, Inc.
Title: Hydrogeologist
Date: 7-19-05 Time: 10:00
Name: CRAIG PARILLO Signature:
Laboratory Name: Acotest
NJDEP Laboratory Cert. No. 12/29 Title: Sew. Tech.
Date: 7/9/05 Time: 1200 %
Did samples arrive cold? Yes or No Were the samples properly preserved? Yes or No
If no, which analyses will be affected:
Did sample for the analyses of volatile organics contain
headspace? Yes or No_\darksquare /
Was the septum in place with the TFE side down? Yes V No

QAQC-B Page 2 of 3

Sample Preparation Chemist

	Name please print	Signature	Date
1. Base/Neutrals			
2. Acids			
3. Pesticides	·		·
4. Herbicides	•		-
5. PCB's			-
6. Metals			• •
7. Other	<u></u> .		<u> </u>
8. Other		·	
9. Other	· ·		•
•			
	Analyst	<u> </u>	-
	Name please print	Signature	Date
1. Base/Neutrals	·	· · · · · · · · · · · · · · · · · · ·	•
2. Acids		<u> </u>	
3. Pesticides			
4. Herbicides	/ ~ / ~		
5. PCB's	<u> </u>		<u> </u>
6. Metals			·
7. Volatiles	Ering Ann Gaus Mc	Efthe Pod signed of	w Erroy 8/12/03
8. TOC		, , ,	
9. TOX			
10. Phenols (total)			
11. Cyanide (total)			•
12. Other			
13. Other			
14. Other			
ocher	· · · · · · · · · · · · · · · · · · ·		-

Sample Preparation Chemist

	Name please print	Signature	<u>Date</u>
1. Base/Neutrals		 	
2. Acids			
3. Pesticides			- • • • • • • • • • • • • • • • • • • •
4. Herbicides		· .	
5. PCB's		· ·	· · · · · · · · · · · · · · · · · · ·
6. Metals	Wally PixenteL	Wally Pimertel	7/27/05
7. Other	· · · · · · · · · · · · · · · · · · ·		
8. Other			<u> </u>
9. Other	-	-	
	Analy	<u>st</u>	•
	Name please print	Signature	Date
1. Base/Neutrals	-		·
2. Acids		<u></u>	-
3. Pesticides			**
4. Herbicides	Com-	<u></u>	
5. PCB's			
6. Ñetals	· Latha Haran	Midaltre	8/6/05
7. Volatiles			·
8. TOC			
9. TOX			
10. Phenols (total)			
11. Cyanide (total)			
12. Other			
13. Other			
14. Other			

Sample Preparation Chemist

	Name please print	Signature	Date
1. Base/Neutrals			
2. Acids	· · · · · · · · · · · · · · · · · · ·		
3. Pesticides			
4. Herbicides			·
5. PCB's			-
6. Metals			
7. Other			
8. Other			
9. Other			·
. Ouror		··	
	Analy	<u>st</u>	•
	Name please print	Signature	Date
	-		
1. Base/Neutrals			•
2. Acids			
3. Pesticides		<u> </u>	
4. Herbicides	/ /	<u> </u>	•
5. PCB's		<u> </u>	
6. Metals			·
7. Volatiles		<u> </u>	
8. TOC			
9. TOX	-		
10. Phenols (total)			•
11. Cyanide (total)	-	2 0 111	estilos-
12. Other (GoL)	ADP Aruna Pachihana -	acyna Pachibar Oy	8/11/05
13. Other (705)	JH Jasmine Heddish	James Hiddish	8/11/0,5
14. Other (755)	JH Jasmine Hoddish	Jame Heddish_	

Did any of the sample extr times? Yes No		exceed holding
If yes, which analyses will	l be affected:	·
		•
If re-extraction and/or reason and attach another with the appropriate signature		y, indicate the ustody/Chronicle
Quality Assurance Officer		
Name (please print)	Signature	<u>Date</u>
GAEGGAY TUMROVICH	Buyny Townish.	8/10/05

LABORATORY AUTHENTICATION STATEMENT FOR NJPDES COMPLIANCE MONITORING

I certify under penalty of law, where applicable, this laboratory meets the Laboratory Performance Standards and Quality control requirements specified in N.J.A.C. 7:18, 40 CFR 136 for Water and Wastewater Analyses and SW 846 for Solid Waste Analyses. I have personally examined and am familiar with the information contained in this report, and that, based on my inquiry of those individuals immediately responsible for obtaining the information. I believe the submitted information is true, accurate, complete, and meets the standards specified in N.J.A.C. 7:18, 40 CFR 136, and/or SW 846. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment.

Laboratory Manager (as defined in N.J.A.C. 7:18)

3,88	ACCUTEST.
1,5	Laboratories

CHAIN OF CUSTODY

te 130, Dayton NJ 08810
200 FAX: 732-329-3499/3488
num accutact com

-	
ED-EX Tracking #	Bottin Order Control #
Accutest Quote #	Accuriosi Job # J 4497
WIND TRUSTER	

		2235 Route I												FED-	FED-EX Tracking # Bottle Order Control #												
	accutest.								200 ww.ac				499/.	1486	Accut	est Quo	to #				Accuracy Job #						
_	Laboratories														200000	Rec						J4497					
	Client / Reporting Information	1		A 111 1140	**************************************	- 4	Ρ	roject inf	ormetion				*****					1		Requi	sted A	alysa				Matrix Codes OW - Orinking Water	
Company Na	ma		P1	roject N	14me 7_ <i>1</i>	00	× /	v τ Ρ	DE	ی					1		1	l								GW - Ground Weter	
Address	sannett Fleming		S	reet											1	le l	ŀ		6			,				WW - Websr	
AUL 1000	202 Wall St.				7	11+	7									Ē			#/		1					SW - Surface Weter	
City P	202 Wall St.	Z14 O & 5 Y	٥	ty	Por	non	a	Stat	۰ ۸	7					D PMG									80 - Sell			
Project Conta	d o	E-mail	Pi	oject#		438	20	0.3	0						8 3	00		*/	9				Jų			SL - Studge	
	Robyn myhre		:	21 #		,,,,									ᆛᇋ	E.	E.	40	100	FC	פי		Ŋ		ŀ	01-08	
Phone #	609-279-9140														2 E	말				7	210	١,	17			LIQ - Other Liquid AIR - Air	
Sampler's Na	Robyn myhre		C	lent Pu	rchase Ord	pr #									35	20 23	20.2	tal	530	4	01.35	0	T05	V		SQL - Other Solid	
Acculest	Field ID / Point of Collection	SUMMA		C	ollection		$\overline{}$			Vumbo	r of pre	serve	i Botti	*				701		70	Ę	8	12	0		WP - Wipe	
Sample #	I and the Francisco	MECH Via	1	ata .	Time	Sempled By	Matrix	# of bottles	a 9	Ħ	ă	¥		1 8	35	0 20 2	D MAN	7	0	^	7	ľ				LAB USE OHLY	
-18	Inw-I	WECH THE	7/18		16:08	PM	6 W	7	2	12	╁	5	1	1	T			×	×	×	×	×	×	¥			
-28	mw-3		+		14.05	1	1	3	121	15	T	n	╗	\top	1	Г		×	×			×				MEII	
			++		1504		╁┼╴	-	+	+:	+	H	-+	+	+-	-	П	×	×		_	×	\vdash	П		WC30	
-3F	mw-4		+{		-	+	⊢⊢	3	╌┼╌	+	+-	Н	\dashv	╁	+		H	<u>~</u>	-\ \	_	┢	×		-		4994	
-4F	mw-6		-		16:43	+-	H	3	⊢⊦	13	+-	Ц	-	+	+-	┝	Н		-		<u> </u>	-	├ ─┤	\vdash	\dashv	7774	
-54	mw-9				14.74		Ш	3	Щ	_ 2	丄	Ш	4	4	↓_	L.	L	×	×	<u> </u>	_	×		┝┈	-		
-66	mw-10				17:07		L	7	3	2	L	2		丄		L		X	×	X	×	×	×	×			
- 7F	mω-2		1		17:07		¥	7	3	2		2		1	1	Ĺ		×	×	×	×	*	×	×			
-8 F	FB		1	Y	17:30		B	6	2	72		2						×	Х	×	¥	×	×	×			
- 9	TB		7/1	8/05	1	+	La	2	2	Т													Ш	×			
									П	Т	T	П	T	Т								l					
* 1	Turneround Time (Business Days)		(engli		31	100		Data D	lversbk	hion	nation		ile c	neckity)	5		4.0	v.	Ž., v.		ommer	ts / Ra	nerica.	<u>Ç</u> E EL			
59 Std. 15	Business Days Approved By: /	Date:			Commen				_	OTT C						1	GAGC Form B+C-Signatures										
			_		Commen						Catego Catego	-															
□ 6 Day RI					NJ Full	~.				itala Fo		-, -				\vdash											
☐ 3 Day El			_		Other				₽æb₽	DD Fo	rmal .					-											
Day E																											
Other					Comm	rcial "A"	- Res	uits Oni	Y							-											
	& Rush T/A data avaliable VIA LabLink					•						_				_ـــ		300 m 20	- A-C	in the second	50.806 six			i di sina			
	A	Date Time 10-9	Se Se	nple Ci	uslody musi	be docu	mented	below es	ch time	sumple auton	s chan	ge pos	1865310	n, incl	aing cou	IBF (IBh)	ey mi	Dette	Time		Receives	167.		$\overline{}$	//	have a resignished as the Fifthern	
, 4	itin much	7)19/05	. 17.	17	1.1.1	1 ブ		05	- 1	\overline{Z}),[[u	L.	⚠			<u>,</u>	<u>/</u> -	9-6	<u>301</u>	2	<u></u>	<u>کمہ</u>	-/	16		
Reinquisted by	, ,	Date Time:	Received b								hed by							Dex	Time		Flacelver	i by:	0				
3 Retrouished by		Data Time:	Received b	- -						uslody	Sep 0		_			Pres	arved who	na abbye	#	 +	On less			С	ooler Terri		
	"			•					- [24	6/	60	_				7	V						31	0	

J4497: Chain of Custody Page 1 of 1

I C I C						
I. General Infordation Client Name: Le	mation: enox China Pomon	a, NJ	Project No. : <u>43838.020</u>			
Project Name: 1	NJPDES Quarterly	Monitoring	Sampled By: RM/MH			
Well No.: MW-	<u>l</u>			Well Use: Mor	nitoring	
Sample ID: MW	<u>'-1</u>	Sample Date: 7/	<u>18/05</u>	Sample Time: 1	16:08	
•		-				
II. Well Informa	ution:					
PID Reading: -	/		Well Diameter:	4 inches		
Static Depth to	Water : <u>11.07</u> ft. b	elow m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing	
Total Well Dept	th: <u>29.75</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing	
Δ h: <u>18.68</u> feet			Volume of Stan	ding Water: <u>12.1</u>	4 gallons	
Volume to be re	emoved: <u>36.42</u> gall	lons	Actual Volume	removed: <u>40.00</u> g	gallons	
	C					
III. Sampling In	formation:					
Purging Method			Submersible	Dumn		
Peristaltic Pu	итр			•		
☐ Bailer			Other			
Well Drawdown	n/Recovery:	⊠ Good	☐ Poor	Other		
Pump Flow Rate: 2.0 gpm Purge Start: 1			5:48 Purge Time : <u>20</u> min.			
Purge Chemistr		T			1	
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
Time 15:53	Gallons 10	5.13	.073	5.0	15.4	
Time 15:53 15:58	Gallons 10 20	5.13 4.97	.073 .075	5.0 5.6	15.4 15.1	
Time 15:53 15:58 16:03	Gallons 10 20 30	5.13 4.97 4.99	.073 .075 .075	5.0 5.6 5.3	15.4 15.1 15.0	
Time 15:53 15:58	Gallons 10 20	5.13 4.97	.073 .075	5.0 5.6	15.4 15.1	
Time 15:53 15:58 16:03	Gallons 10 20 30	5.13 4.97 4.99	.073 .075 .075	5.0 5.6 5.3	15.4 15.1 15.0	
Time 15:53 15:58 16:03	Gallons 10 20 30	5.13 4.97 4.99	.073 .075 .075	5.0 5.6 5.3	15.4 15.1 15.0	
Time 15:53 15:58 16:03 16:07	Gallons 10 20 30 40	5.13 4.97 4.99 5.03	.073 .075 .075	5.0 5.6 5.3 6.0	15.4 15.1 15.0	
Time 15:53 15:58 16:03 16:07 Depth to water a	Gallons 10 20 30 40 after purge: 11.67	5.13 4.97 4.99 5.03	.073 .075 .075 .075	5.0 5.6 5.3 6.0	15.4 15.1 15.0	
Time 15:53 15:58 16:03 16:07 Depth to water a	Gallons 10 20 30 40 after purge: 11.67 prior to sampling:	5.13 4.97 4.99 5.03 ft. below m.p.	.073 .075 .075 .075	5.0 5.6 5.3 6.0 Time: 16:08 Time: 16:08 ✓	15.4 15.1 15.0 14.9	
Time 15:53 15:58 16:03 16:07 Depth to water at the control of the	Gallons 10 20 30 40 after purge: 11.67 prior to sampling:	5.13 4.97 4.99 5.03 ft. below m.p. 11.67 ft. below m	.073 .075 .075 .075	5.0 5.6 5.3 6.0	15.4 15.1 15.0	
Time 15:53 15:58 16:03 16:07 Depth to water a	Gallons 10 20 30 40 after purge: 11.67 prior to sampling:	5.13 4.97 4.99 5.03 ft. below m.p. 11.67 ft. below m	.073 .075 .075 .075	5.0 5.6 5.3 6.0 Time: 16:08 Time: 16:08 ✓	15.4 15.1 15.0 14.9	
Time 15:53 15:58 16:03 16:07 Depth to water at the sample Appearance of the sample Odor:	Gallons 10 20 30 40 after purge: 11.67 prior to sampling: ance:	5.13 4.97 4.99 5.03 ft. below m.p. 11.67 ft. below m	.073 .075 .075 .075	5.0 5.6 5.3 6.0 Time: 16:08 Time: 16:08 ✓	15.4 15.1 15.0 14.9	
Time 15:53 15:58 16:03 16:07 Depth to water at the sample Appearance Sample Odor: IV. Sample Anal.	Gallons 10 20 30 40 after purge: 11.67 prior to sampling: ance:	5.13 4.97 4.99 5.03 ft. below m.p. 11.67 ft. below m d	.073 .075 .075 .075	5.0 5.6 5.3 6.0 Time: 16:08 Time: 16:08 ✓	15.4 15.1 15.0 14.9	
Time 15:53 15:58 16:03 16:07 Depth to water at the sample Appearance Sample Odor: IV. Sample Anal.	Gallons 10 20 30 40 after purge: 11.67 prior to sampling: ance:	5.13 4.97 4.99 5.03 ft. below m.p. 11.67 ft. below m d	.073 .075 .075 .075	5.0 5.6 5.3 6.0 Time: 16:08 Time: 16:08 ✓	15.4 15.1 15.0 14.9 Other	

I. General Inform Client Name: Ler	,	a, NJ		Project No.: 4	13838.02 <u>0</u>	
Project Name: N.			Sampled By: RM/MH			
Well No.: MW-3			Well Use: Monitoring			
Sample ID: MW-3 Sample Date: 7			18/05	Sample Time:	_	
Sample 1D. <u>WW-</u>	<u>5</u>	Sample Date. 11	10/05	Sample Time.	14.00	
II. Well Information: PID Reading: -			Well Diameter: 4 inches			
Static Depth to Water: 9.87 ft. below m.p.			Measuring Poir	nt (m.p.): <u>PVC C</u>	asing	
Total Well Depth	ı: <u>30.40</u> ft. below	m.p.	Measuring Poin	nt (m.p.): <u>PVC C</u>	asing	
Δ h: 20.53 feet			Volume of Stan	iding Water: 13.	34 gallons	
Volume to be ren	noved: <u>40.02</u> gall	ons	Actual Volume	removed: 40.00	gallons	
III. Sampling Info Purging Method: ☑ Peristaltic Pur ☐ Bailer	ormation:		Submersible	e Pump		
Well Drawdown/	Recovery:	⊠ Good	Poor	Other		
Well Drawdown/Recovery: ☐ Good Pump Flow Rate: 2.9 gpm Purge Star						
Purge Chemistry	:			<u>,</u>		
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
13:53	10	5.76	.467	4.4	20.5	
13:56	20	5.84	.426	4.1	21.8	
13:59	30	5.84 5.76	.445 .450	6.3	20.9	
14:04	40	5.70	.450	3.2	20.5	
					 	
Depth to water at	fter purge: <u>12.51</u>	ft. below m.p.		Time: <u>14:05</u>		
Depth to water prior to sampling: 12.51 ft. below m			.p. Time: <u>14:05</u>			
Sample Appearan	nce: Turbio	d 🗆 SI	ightly Turbid	⊠ Clear	Other	
Sample Odor:	None None	□ o	ther			
IV. Sample Analy. Sample Paramete				⊠ Unfilt	arad	
Metals:				_	CIEG	
Laboratory: Accutest Date Shipped: 7/19/05						

			e.		
I. General Infor Client Name: <u>L</u> e	mation: enox China Pomor	na, NJ		Project No.: 43	838.020
Project Name: 1	NJPDES Quarterly	Monitoring	Sampled By: RM/MH		
Well No.: MW-	<u>4</u>			Well Use: Mon	itoring
Sample ID: MW-4 Sample Date: 7			<u>′18/05</u>	Sample Time: 1	<u>5:04</u> ~
		•		•	
II. Well Informa	ution:				
PID Reading: _			Well Diameter:		
=	Water: <u>7.41</u> ft. be	-	Measuring Poin	nt (m.p.): <u>PVC Cas</u>	sing
Total Well Dept	th: <u>26.80</u> ft. below	m.p.	Measuring Poin	ıt (m.p.): <u>PVC Cas</u>	sing
Δ h: <u>19.39</u> feet			Volume of Stan	ding Water: <u>12.60</u>	gallons
Volume to be re	emoved: <u>37.80</u> gal	lons	Actual Volume	removed: <u>40.00</u> g	allons
III. Sampling In	formation:				
Purging Method	d:				
Peristaltic Pu	итр		Submersible	Pump	
☐ Bailer			Other		
Well Drawdown	n/Recovery:	⊠ Good	Poor	Other	
· —			4:47 Purge Time : 17 min.		
Pump Flow Rat	e: <u>2.3</u> gpm	Purge Start: 14	<u>4:47</u>	Purge Time:	<u>17</u> min.
		Purge Start: 1	<u>4:47</u>	Purge Time:	17 min.
Purge Chemistr	y :				
		pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
Purge Chemistr	y: Gallons				
Purge Chemistr Time 14:51	y: Gallons 10	pH (Std. Units) 5.66	Sp. Cond. (ms) .173	D. O. (ppm) 4.9	Temp. (°C)
Purge Chemistr Time 14:51 14:55	y: Gallons 10 20	pH (Std. Units) 5.66 5.59	Sp. Cond. (ms) .173 .188	D. O. (ppm) 4.9 4.5	Temp. (°C) 19.1 20.6
Purge Chemistr Time 14:51 14:55 14:59	y: Gallons 10 20 30	pH (Std. Units) 5.66 5.59 5.55	Sp. Cond. (ms) .173 .188 .188	D. O. (ppm) 4.9 4.5 4.7	Temp. (°C) 19.1 20.6 20.1
Purge Chemistr Time 14:51 14:55 14:59	y: Gallons 10 20 30	pH (Std. Units) 5.66 5.59 5.55	Sp. Cond. (ms) .173 .188 .188	D. O. (ppm) 4.9 4.5 4.7	Temp. (°C) 19.1 20.6 20.1
Purge Chemistr Time 14:51 14:55 14:59	y: Gallons 10 20 30	pH (Std. Units) 5.66 5.59 5.55	Sp. Cond. (ms) .173 .188 .188	D. O. (ppm) 4.9 4.5 4.7	Temp. (°C) 19.1 20.6 20.1
Purge Chemistr Time 14:51 14:55 14:59 15:03	y: Gallons 10 20 30	pH (Std. Units) 5.66 5.59 5.55 5.57	Sp. Cond. (ms) .173 .188 .188	D. O. (ppm) 4.9 4.5 4.7	Temp. (°C) 19.1 20.6 20.1
Purge Chemistr Time 14:51 14:55 14:59 15:03 Depth to water a	y: Gallons 10 20 30 40 after purge: 8.35 f	pH (Std. Units) 5.66 5.59 5.55 5.57	Sp. Cond. (ms) .173 .188 .188 .186	D. O. (ppm) 4.9 4.5 4.7 5.1	Temp. (°C) 19.1 20.6 20.1
Purge Chemistr Time 14:51 14:55 14:59 15:03 Depth to water a	y: Gallons 10 20 30 40 after purge: 8.35 forior to sampling:	pH (Std. Units) 5.66 5.59 5.55 5.57 t. below m.p. 8.35 ft. below m.p.	Sp. Cond. (ms) .173 .188 .188 .186	D. O. (ppm) 4.9 4.5 4.7 5.1 Time: 15:04 Time: 15:04	Temp. (°C) 19.1 20.6 20.1
Purge Chemistr Time 14:51 14:55 14:59 15:03 Depth to water a	y: Gallons 10 20 30 40 after purge: 8.35 forior to sampling:	pH (Std. Units) 5.66 5.59 5.55 5.57 t. below m.p. 8.35 ft. below m.p.	Sp. Cond. (ms) .173 .188 .188 .186	D. O. (ppm) 4.9 4.5 4.7 5.1 Time: 15:04 Time: 15:04	Temp. (°C) 19.1 20.6 20.1 20.9
Purge Chemistr Time 14:51 14:55 14:59 15:03 Depth to water a Depth to water p Sample Appeara Sample Odor: IV. Sample Analy	y: Gallons 10 20 30 40 after purge: 8.35 forior to sampling: unce: ☐ Turbio	pH (Std. Units) 5.66 5.59 5.55 5.57 t. below m.p. 8.35 ft. below m.p. SI	Sp. Cond. (ms) .173 .188 .188 .186 .186	D. O. (ppm) 4.9 4.5 4.7 5.1 Time: 15:04 ▼ Clear	Temp. (°C) 19.1 20.6 20.1 20.9
Purge Chemistr Time 14:51 14:55 14:59 15:03 Depth to water a Depth to water p Sample Appeara Sample Odor: IV. Sample Analy	gallons 10 20 30 40 after purge: 8.35 forior to sampling: Ince: ☐ Turbic None	pH (Std. Units) 5.66 5.59 5.55 5.57 t. below m.p. 8.35 ft. below m.p	Sp. Cond. (ms) .173 .188 .188 .186 .186	D. O. (ppm) 4.9 4.5 4.7 5.1 Time: 15:04 Time: 15:04	Temp. (°C) 19.1 20.6 20.1 20.9

							
I. General Info				tı,	-		
Client Name: Lenox China Pomona, NJ				Project No.: <u>43838.020</u>			
Project Name: NJPDES Quarterly Monitoring					Sampled By: R	M/MH	
Well No.: MW-6					Well Use: Mon	itoring	
Sample ID: MW-6 Sample Date: 7.			/18/0	5	Sample Time: 1	6:43 /	
		, –	!	•			
II. Well Information: PID Reading: - We				ll Diameter:	4 inches		
0 -	Water: <u>8.86</u> ft. be	low m.p.			ıt (m.p.): <u>PVC Cas</u>	sing	
	th: <u>30.75</u> ft. below				nt (m.p.): <u>PVC Ca</u>	_	
Δ h: 21.89 feet		•			ding Water: <u>14.23</u>	_	
	emoved: <u>42.69</u> gal	lons			removed: 45.00 g		
	8					u110110	
III. Sampling In							
Purging Metho					_		
Peristaltic P	ump		LJ	Submersible	•		
☐ Bailer				Other			
Well Drawdowi	n/Recovery:	⊠ Good		Poor	Other		
Pump Flow Rat	e: <u>2.4</u> gpm	Purge Start: 1	<u>6:24</u>	Purge Time: 19 min.			
Purge Chemistr		T			-		
Time	Gallons	pH (Std. Units)	Sp.	Cond. (ms)	D. O. (ppm)	Temp. (°C)	
16:28	10	4.23		.098	4.7	15.3	
16:34 16:37	20	4.24		.131	7.3	15.2	
16:40	30 40	4.26 4.27		.151	4.8	15.2 15.2	
10.40	40	4.27		.100	4.7	15.2	
Depth to water a	after purge: <u>9.33</u> f	t. below m.p.			Time: 16:43		
Depth to water prior to sampling: 9.33 ft. below m.p.				Time: 16:43			
Sample Appeara				Turbid	∑ Clear □	Other	
Sample Odor:	⊠ None		her			-	
•			_				
IV. Sample Analy	vses:						
	ers: Metals (Pb, Z	n), Color					
Metals:					□ Unfilter	ed	
				Date Shipped: 7/19/05			

	_					
I. General Inform Client Name: Len		a, NJ		Project No.:	<u>43838.020</u>	
Project Name: NJ	PDES Quarterly	Monitoring	Sampled By: RM/MH			
Well No.: MW-9				Well Use: M	onitoring	
Sample ID: <u>MW-9</u> Sample Date: <u>7.</u>			1 <u>8/05</u>	Sample Time	: <u>14:34</u> ✓	
	-	•		•		
II. Well Information PID Reading: -	ion:		Well Diameter: 4 inches			
Static Depth to W	/ater: <u>12.96</u> ft. be	elow m.p.	Measuring Poi	nt (m.p.): <u>PVC (</u>	Casing	
Total Well Depth	: <u>31.15</u> ft. below	m.p.	Measuring Poi	nt (m.p.): <u>PVC (</u>	Casing	
Δ h: 18.19 feet			Volume of Stan	iding Water: 11	.82 gallons	
Volume to be ren	noved: <u>35.46</u> gall	ons	Actual Volume	removed: 40.00	gallons	
III. Sampling Info Purging Method: Peristaltic Pun			☐ Submersible	e Pump		
Bailer			Other	-		
Well Drawdown/	Recovery:	⊠ Good	Poor	Other		
Pump Flow Rate:	2.0 gpm	Purge Start: 1				
Purge Chemistry:	:					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
14:19	10	6.39	.324	0.5	16.5	
14:24	20	5.92	.259	1.8	16.6	
14:28	30	5.88	.241	2.0	16.4	
14:33	40	5.84	.231	2.2	16.3	
				ļ		
Depth to water af	ter purge: <u>12.96</u>	ft. below m.p.		Time: <u>14:34</u>		
Depth to water prior to sampling: 12.96 ft. below m			n.p. Time: 14:34 [/]			
Sample Appearan			ightly Turbid	☐ Clear	Other	
Sample Odor:	None	□ o	ther			
IV. Sample Analys	200					
Sample Paramete				⊠ unes	tered	
Sample Paramete Metals: Laboratory: <u>Accur</u>	rs: <u>Metals (Pb, Z</u>	n), Color Filtered	Date Shippe	⊠ Unfi	tered	

I. General Inform		N/7			
Client Name: <u>Le</u>			Project No.: <u>43838.020</u>		
Project Name: <u>N</u>	IJPDES Quarterl	y Monitoring	•	Sampled By: R	RM/MH
Well No.: MW-1	<u>0</u>			Well Use: Mon	nitoring
Sample ID: MW	-10/MW-2	Sample Date: 7	/18/05	Sample Time: 1	<u> 17:07</u> ~
II. Well Informa	tion:				
PID Reading: -			Well Diameter:	4 inches	
Static Depth to Water: 7.44 ft. below m.p. Measuri				nt (m.p.): <u>PVC Ca</u>	sing
Total Well Depti	h: <u>29.30</u> ft. below	/ m.p.	Measuring Poir	nt (m.p.): <u>PVC Ca</u>	sing
Δ h: 21.86 feet			Volume of Stan	ding Water: 14.2	1 gallons
Volume to be rei	noved: 42.63 gal	llons		removed: <u>45.00</u> g	
III. Sampling Inf Purging Method	:				
Peristaltic Pur	mp		☐ Submersible	Pump	
☐ Bailer			Other		
Well Drawdown/	Recovery:	⊠ Good	Poor	Other	
Pump Flow Rate: 2.6 gpm		Purge Start: 16:50		Purge Time: 17 min.	
Pump Flow Rate	: <u>2.6</u> gpm	r urge Start: 1	<u>0.50</u>	i uigo imio.	<u> </u>
rump riow Rate	: <u>2.6</u> gpm	r urge Start: 1	<u>0.50</u>	r urge rime.	<u> 17</u> mm.
Pump Flow Rate Purge Chemistry		rurge Start: 1	0.30	Turge rime.	. <u>17</u> mm.
Purge Chemistry	: Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
Purge Chemistry Time 16:54	: Gallons 10	pH (Std. Units) 5.37	Sp. Cond. (ms) .313	D. O. (ppm) 1.6	Temp. (°C)
Purge Chemistry Time 16:54 16:57	: Gallons 10 20	pH (Std. Units) 5.37 5.36	Sp. Cond. (ms) .313 .308	D. O. (ppm) 1.6 1.4	Temp. (°C) 16.6 16.6
Purge Chemistry Time 16:54 16:57 17:00	: Gallons 10 20 30	pH (Std. Units) 5.37 5.36 5.36	Sp. Cond. (ms) .313 .308 .302	D. O. (ppm) 1.6 1.4 2.9	Temp. (°C) 16.6 16.6 16.6
Purge Chemistry Time 16:54 16:57	: Gallons 10 20	pH (Std. Units) 5.37 5.36	Sp. Cond. (ms) .313 .308	D. O. (ppm) 1.6 1.4	Temp. (°C) 16.6 16.6
Purge Chemistry Time 16:54 16:57 17:00	: Gallons 10 20 30	pH (Std. Units) 5.37 5.36 5.36	Sp. Cond. (ms) .313 .308 .302	D. O. (ppm) 1.6 1.4 2.9	Temp. (°C) 16.6 16.6 16.6
Purge Chemistry Time 16:54 16:57 17:00	: Gallons 10 20 30	pH (Std. Units) 5.37 5.36 5.36	Sp. Cond. (ms) .313 .308 .302	D. O. (ppm) 1.6 1.4 2.9	Temp. (°C) 16.6 16.6 16.6
Purge Chemistry Time 16:54 16:57 17:00	: Gallons 10 20 30	pH (Std. Units) 5.37 5.36 5.36	Sp. Cond. (ms) .313 .308 .302	D. O. (ppm) 1.6 1.4 2.9	Temp. (°C) 16.6 16.6 16.6
Purge Chemistry Time 16:54 16:57 17:00	Gallons 10 20 30 40	pH (Std. Units) 5.37 5.36 5.36 5.35	Sp. Cond. (ms) .313 .308 .302	D. O. (ppm) 1.6 1.4 2.9	Temp. (°C) 16.6 16.6 16.6
Purge Chemistry Time 16:54 16:57 17:00 17:04	Gallons 10 20 30 40 Ster purge: 7.53	pH (Std. Units) 5.37 5.36 5.36 5.35	Sp. Cond. (ms) .313 .308 .302 .297	D. O. (ppm) 1.6 1.4 2.9 2.3	Temp. (°C) 16.6 16.6 16.6
Purge Chemistry Time 16:54 16:57 17:00 17:04 Depth to water af	Gallons	pH (Std. Units) 5.37 5.36 5.36 5.35 ft. below m.p. 7.53 ft. below m.p	Sp. Cond. (ms) .313 .308 .302 .297	D. O. (ppm) 1.6 1.4 2.9 2.3 Time: 17:07	Temp. (°C) 16.6 16.6 16.6
Purge Chemistry Time 16:54 16:57 17:00 17:04 Depth to water af	Gallons	pH (Std. Units) 5.37 5.36 5.36 5.35 ft. below m.p. 7.53 ft. below m.p	Sp. Cond. (ms) .313 .308 .302 .297	D. O. (ppm) 1.6 1.4 2.9 2.3 Time: 17:07 Time: 17:07	Temp. (°C) 16.6 16.6 16.6
Purge Chemistry Time 16:54 16:57 17:00 17:04 Depth to water af Depth to water properties of the sample Appearant Sample Odor: IV. Sample Analys Sample Parameter	Gallons 10 20 30 40 Ster purge: 7.53 frior to sampling: Ince:	pH (Std. Units) 5.37 5.36 5.36 5.35 ft. below m.p. 7.53 ft. below m.p Other color Other color	Sp. Cond. (ms) .313 .308 .302 .297 .ightly Turbid .her	D. O. (ppm) 1.6 1.4 2.9 2.3 Time: 17:07 Time: 17:07	Temp. (°C) 16.6 16.6 16.6 16.6
Purge Chemistry Time 16:54 16:57 17:00 17:04 Depth to water at Depth to water properties of the sample Appearant Sample Odor: IV. Sample Analysis	Gallons 10 20 30 40 Ster purge: 7.53 frior to sampling: Ince:	pH (Std. Units) 5.37 5.36 5.36 5.35 ft. below m.p. 7.53 ft. below m.p	Sp. Cond. (ms) .313 .308 .302 .297 .ightly Turbid .her	D. O. (ppm) 1.6 1.4 2.9 2.3 Time: 17:07 Time: 17:07	Temp. (°C) 16.6 16.6 16.6 16.6